DCASE20190HAUENCE

Summary & Results, Task 2

12 Audio tagging with noisy labels and minimal supervision

Coordinators Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis

> Results https://tinyurl.com/y4fbj2a8

Motivation

- General-purpose sound event recognizers
- follow-up of DCASE2018 Task2, but:
 - b double number of categories
 - b much more data
 - \triangleright multi-class \Rightarrow multi-label

Task Description

- Goal: predict labels among 80 diverse categories
- multi-label audio tagging
- many noisy labels
 & limited supervision
- domain mismatchFreesound Flickr

Task Setup & Some Numbers

80 classes, over 100 hours

Dataset: FSDKaggle2019

- labels/clip $1.2 \Rightarrow 1.4$
- variable length $0.3 \Rightarrow 30s$

- weak labels of varying reliability
- FSD: human-labeled
- YFCC: machine-labeled (noisy)
- Kaggle kernels-only competition: all systems run in Kaggle's servers with scores computed on a hidden test set
- ► 880 teams (14 of them submitting 28 systems to DCASE) & 8618 entries
- maximum of 2 daily submissions
- Judges Award to foster novel, problem-specific, efficient approaches
- top-3 winners & Judges Award winner are required to publish the code

Metric: label-weighted label-ranking average precision (lwlrap)

For sample *s* & class label *c*:

- C(s): set of true class labels
- Lab(s, r): class label at rank r
- Rank(s, c): rank of class c
- $1[\cdot]$: 1 if argument true, else 0

- Prec(s, c): label-ranking precision
- $I \omega Irap$ = average *Prec* over all labels

Baseline System

Human sounds (e.g. speech, applause)

- Domestic sounds (e.g. microwave oven, toilet flush)
- Musical instrument (e.g. accordion, acoustic guitar)
 - Vehicles (e.g. car passing by, motorcycle)
 - Animal sounds (e.g. cat meow, dog bark)
 - Natural sounds (e.g. fire crackle, raindrop)
- Materials (e.g. glass shatter, fill (with liquid))

Mechanisms (printer, fan)

Results, Top-8

Adopted techniques

- ► Log-mel energies, waveform, CQT, ...
- Mainly CNN/CRNN: VGG, DenseNet, ResNe(X)t, Shake-Shake, Frequency-Aware CNNs, Squeeze-and-Excitation, MobileNet
- Heavy usage of **ensembles** ($2 \Rightarrow 170$): several nets or snapshot learning. Aggregation of predictions or shallow meta-learning
- Exploiting curated train set: mixup, SpecAugment, SpecMix, TTA, ...

System	Features	Classifier	$\mathbf{I}\omega\mathbf{Irap}$
Akiyama	log-mel energies, waveform	CNN, ensemble	0.758
Zhang	log-mel energies, CQT	CNN, RNN, ensemble	0.758
Ebbers	log-mel energies	CRNN, ensemble	0.755
Bouteillon	log-mel energies	CNN	0.752
Kuaiyu	log-mel energies	CNN, ensemble	0.741
Koutini	log-mel energies	CNN, RFR, ensemble	0.737
Zhang	log-mel energies, PCEN	CNN, ensemble	0.734
Boqing	log-mel energies	CNN, ensemble	0.724

Label noise: semi-supervised learning, instance selection, multi-task learning, loss functions, per-class loss weighting, stochastic weight averaging, adaptive-weighting of noisy samples, MixMatch, ...

Open Knowledge: discussion forum & sharing kernels

DETECTION AND CLASSIFICATION OF ACOUSTIC SCENES AND EVENTS

upf. Universitat MTG Pompeu Fabra Music Technology Barcelona Group

