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Context Proposed Approach https:/github.com/edufonseca/uclser20 Results
Task: learn sound event representation in - S :
o _ . . : : ~ ampling patches
unsupervised fashion L (1 )\) Ti =+ A [E (337,) /E (bz)] b'" A U (O’ a) . g_p. Table 1. kNN val accuracy for several ways of sampling TF patches.
. e . 0.1 ~ best: sampling at random
Motivation: common scenario in sound event research a € [ ) ] - worst: using same patch Sampling method  KNN | Sampling method kNN
o few manually labeled / abundant unlabeled data - overlapping patches + detrimental Sampling atrandom  70.1 | d =125 67.9
. . \ h e N 2 . d = 0 (same patch)  51.1 | d =200 69.9
Self-supervised learning: Mix-back DA Encoder "1 Head 2 ~ results accord with [3] d = 25 615 | d =300 68.5
o learn representation from data w/o explicit labels I . effective d="175 65.1 | d = 400 69.7
A . J \ J
e generate pseudo-labels, y, from the data itself A
o design proxy task » useful representations emerge Jo ! Ez’j
A — T Mix-back
Contrastive learning is learning by comparing pairs of Mix-back DA | Head > ~ mixing patches with unrelated backgrounds helps Mix-back setting () kNN
examp.le.s: | o ’hj ~ z 7 ~ adjusting the energy is also beneficial w/ E adjustment (0.05)  70.1
e positive pairs of similar inputs ~ prevent aggressive transforms & keeping semantics w/o E adjustment (0.02)  66.2
« negative pairs of unrelated inputs . W0 mix-back 0.5
. | | | exp (sim(zi, 2;)/T)
Goal is an embedding space where representations ... B DA:Data augmentation £;; = —log ——% _
« of similar examples = close together > i Lwszi €XD (St 2i;.2v)/T) Data Augmentation
. of dissimilar examples =» further away . Explore DAs applied individually N DA policy KNN
o random resized cropping: stretch & freq transposition RRC 1 o ——
e ! o o o e SpecAugment (time/freq masking) [4 comp RS '
System Description Evaluation using FSDnoisy18k [2] pecAugment (time/freq 9) 4] RRC + comp 69.6
2. Explore DA compositions based on RRC RRC + specAugment  70.0
train set ® I i I iti RRC 690
~ Proxy task: maximize similarity between differently augmented views of o iig : ;ompﬂr‘essmn + Gaussian noise addition specAugment [20] 68.0
sound events, inspired by SimCLR [1] train set testset 10 ‘ pecAugment w/o DA 60.1
et T e T ! — N | | | e Mmore exhaustive exploration = better results
1. Sampling TF patches (aka Temporal Proximity) | | | s
'« sample two patches (101x96) at random within audio clip spectrogram | o o
| . . I — ’ 400 -
: * tempora}i ctgherence among nelghbourlng patCheS » natural data : 15,813 clips / 38.8 hours 1772/ 2.4 947 /1.4 Evaluation of learned representations
| augmentation |
| . J o . . : - Supervised baselines: CRNN = VGG-like > ResNet-18
:2. Mix-back. Mix incoming patch with a background patch | IS E S LS . Linear Eval:
i » reduce mL!tuaI information while kgeping seman’sics i - 20 classes / 18k clips / 42.5 h R « ResNet-18 is top: larger capacity is better for unsupervised contrastive learning
e energy adjustment ensures that x. is always dominant over b, : - singly-labeled data » accuracy as metric . exceeds supervised performance
53. Stoc.hastic Data Augmentation i ~ proportion train_noisy / train_clean = 90% / 10% o VGG-like & CRNN: recover most of supervised perf
| ¢ d.”’eCtly over TF patches . | ~ per-class varying degree of label noise Table 3. Test accuracy for linear eval & two downstream tasks.
: * Slmple for OP-the_ﬂy Co.mpUtatlon . . . i N Wwweduardofonsecanet/FSDnO|Sv18k/ - Fine tuning Model | Linear Larger noisy set Small clean set
e rano.lc?m resized cropping (RRC), con'!pressmn, Gausqan noise | : . our method is best always (weightsin M)| - random®  pt | random  pat
| addition, specAugment [4], random time/frequency shifts, Gaussian | + ResNet-18
! blurrin | Two stages: ResNet-18 (11), 74.3 65.4 78.2 56.5 77.9
| J | , ] . = Worst from scratch VGG-like (0.3)] 70.0 70.6 72.8 | 61.1 72.3
e hyper-parameters randomly sampled from a distribution for each patch, 1. Unsupervised representation learning . top with unsup pre-training CRNN (1) 64.4 72.0 742 | 587 69.1
___________ .“““"““““_““““““““““““““““““J o train on train_noisy / validate on train_clean using labels in kNN eval o Greater improvements in “smaller clean” task
- Conv}:)lu'ftlclmalde.ncod.er b eddinae . pairwise cosine similarity on z » Pre-trained performance = little degradation between tasks: why?
* extractiowdimensional embeddings ediction by maiority voting across k=200 neiahbours » “smaller clean” task: fine tune on unseen clean data (albeit small)
e once the training is over, i is used for downstream tasks " P y MaJorty J J = “larger noisy” task: fine tune on same data used for unsupervised learning
« ResNet-18 / VGG-like / CRNN after removing classification layer 2. Evaluation of the representation using supervised tasks (w/ labels) (now affected by label noise)
-~ Projection Head « Linear Eval: train additional linear classifier on top of embeddings

e map hto L2-normalized metric embedding z, where loss is applied
e MLP w/ one hidden layer + BNorm + RelLU

~ Normalized temperature-scaled cross-entropy (NT-Xent) loss [1]
o softmax structure after initializing with pre-trained weights:

= train on train_noisy / validate on train_clean

o End-to-end Fine Tuning: fine-tune model on two downstream tasks References
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e scoring function: cosine similarity with temperature scaling r 1. train on train_noisy / validate on train_clean
e Maximize similarity between differently augmented views
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2. train on train_clean (allow 15% for validation)



https://github.com/edufonseca/uclser20
http://www.eduardofonseca.net/FSDnoisy18k/

