Paper ID: 4255 Unsupervised Contrastive Learning of Sound Event Representations ICASSP2021

Barcelona

UpicersitatMTGUpf.Pompeu FabraMusic Technology Group

SS

Context

- Task: learn sound event representation in unsupervised fashion
- Motivation: common scenario in sound event research • few manually labeled / abundant unlabeled data
- Self-supervised learning:
- learn representation from data w/o explicit labels
- generate pseudo-labels, ŷ, from the data itself
- design proxy task → useful representations emerge
- **Contrastive learning** is learning by comparing pairs of examples:
- **positive** pairs of **similar** inputs
- **negative** pairs of **unrelated** inputs
- Goal is an embedding space where representations ...
- of similar examples → close together
- of dissimilar examples → further away

System Description

- **Proxy task:** maximize similarity between differently augmented **views** of sound events, inspired by SimCLR [1]
- Sampling TF patches (aka Temporal Proximity)
- sample two patches (101x96) at random within audio clip spectrogram
- temporal coherence among neighbouring patches → natural data augmentation
- *Mix-back*: *Mix* incoming patch with a *back*ground patch
- reduce mutual information while keeping semantics
- energy adjustment ensures that x_i is always dominant over b_i

Stochastic Data Augmentation

- directly over TF patches
- simple for on-the-fly computation
- random resized cropping (RRC), compression, Gaussian noise addition, specAugment [4], random time/frequency shifts, Gaussian blurring
- hyper-parameters randomly sampled from a distribution for each patch;

Convolutional encoder

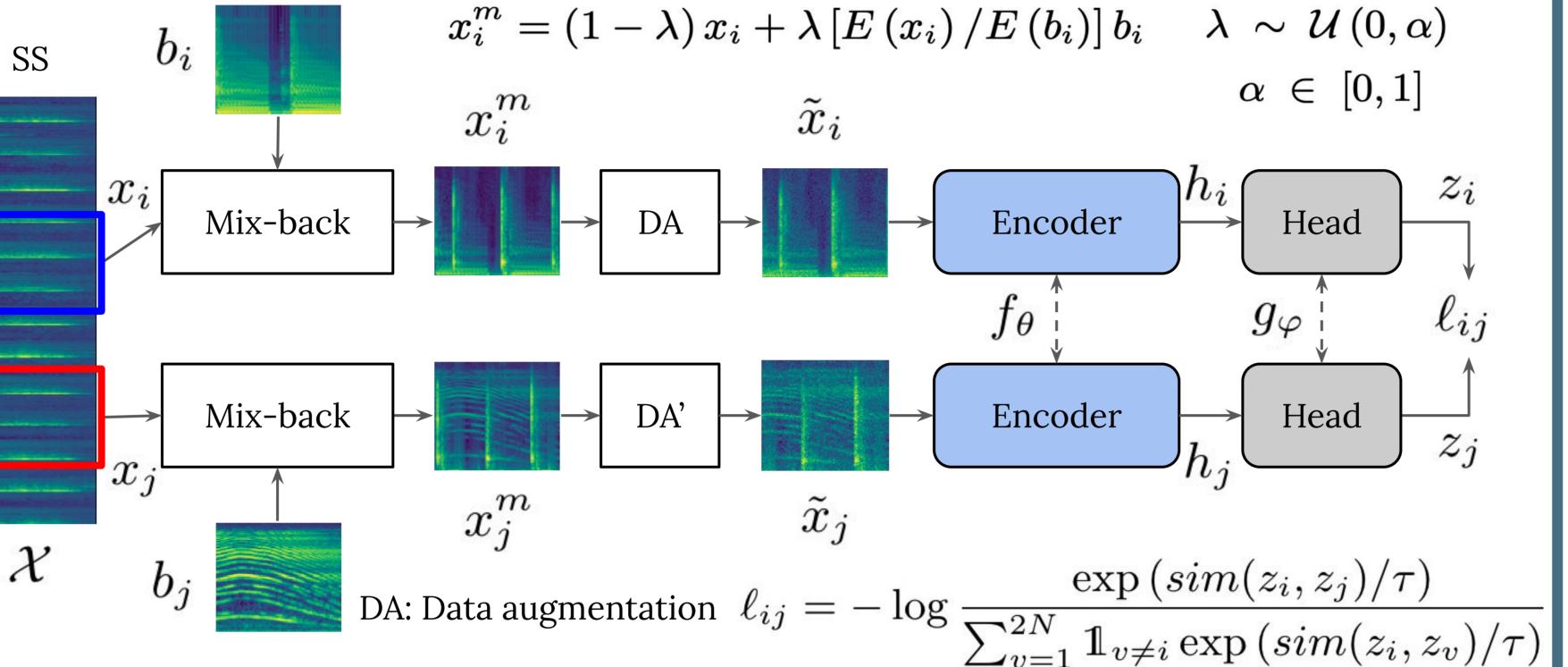
- extract low-dimensional embeddings h
- once the training is over, *h* is used for downstream tasks
- ResNet-18 / VGG-like / CRNN after removing classification layer
- **Projection Head**
- map h to L2-normalized metric embedding z, where loss is applied
- MLP w/ one hidden layer + BNorm + ReLU
- Normalized temperature-scaled cross-entropy (NT-Xent) loss [1]
- softmax structure
- scoring function: cosine similarity with temperature scaling au
- maximize similarity between differently augmented views

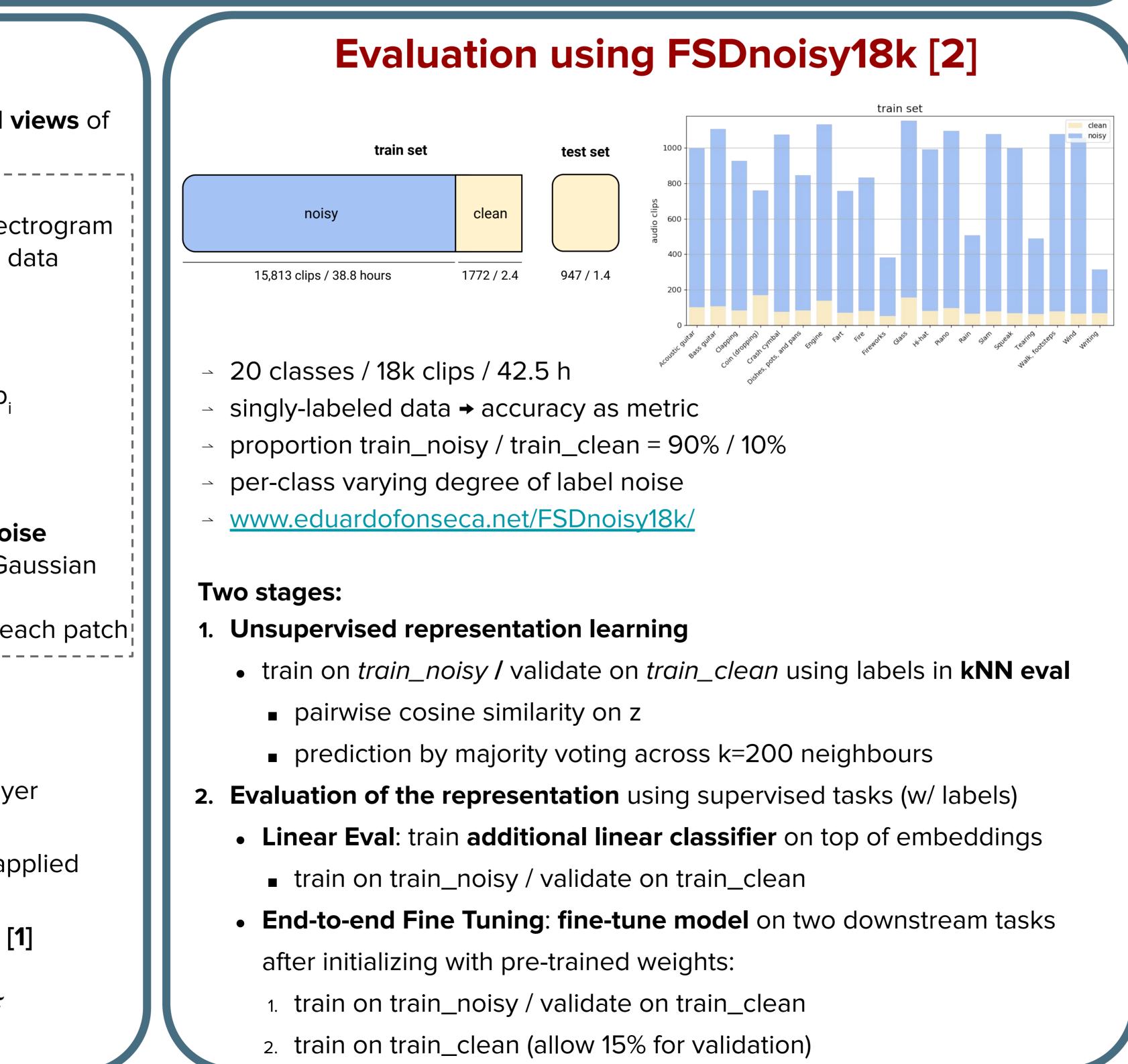
Eduardo Fonseca^{1*}, Diego Ortego^{2*}, Kevin McGuinness², Noel E. O'Connor² and Xavier Serra¹

Yerun Young European Research Universities

¹Music Technology Group, Universitat Pompeu Fabra, Barcelona ²Insight Centre for Data Analytics, Dublin City University *Equal contribution

Proposed Approach https://github.com/edufonseca/uclser20





$$b_{i} \quad \lambda \sim \mathcal{U}(0, \alpha)$$

$$\alpha \in [0, 1]$$

$$a \in [0, 1]$$

Sampling patches

- **best**: sampling at random
- worst: using same patch
- overlapping patches detrimental
- results accord with [3]
- effective

Mix-back

- mixing patches with unrelated back
- adjusting the energy is also benefice
- prevent aggressive transforms & ke

Data Augmentation

- Explore DAs applied individually
- random resized cropping: stretch
- SpecAugment (time/freq masking
- 2. Explore DA compositions based on
 - RRC + compression + Gaussian
 - RRC + SpecAugment
 - more exhaustive exploration → better results

Evaluation of learned representations

- **Supervised baselines:** CRNN ≈ VGG-like > ResNet-18
- → Linear Eval:

 - exceeds supervised performance
 - VGG-like & CRNN: recover most of supervised perf

→ Fine tuning

- our method is best always
- ResNet-18
 - worst from scratch
- top with unsup pre-training
- Greater improvements in "smaller clean" task

- (now affected by **label noise**)

[1] Chen et al., A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020 [2] Fonseca et al. Learning Sound Event Classifiers from Web Audio with Noisy Labels. ICASSP 2019 [3] Tian et al., What Makes for Good Views for Contrastive Learning? NeurIPS 2020 [4] Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. InterSpeech 2019

Metro Toronto Convention Centre

Results

Table 1. kNI	N val accuracy	for several	ways of samplin	g TF patches.

Sampling method	kNN	Sampling method	kNN
Sampling at random	70.1	$\mid d=125$	67.9
d = 0 (same patch)	51.1	d = 200	69.9
d = 25	61.5	d = 300	68.5
d = 75	65.1	d = 400	69.7

kgrounds helps	Mix-back setting (α)
icial ceping semantics	w/ E adjustment (0.05) w/o E adjustment (0.02) w/o mix-back

ch & freq transposition
ng) [4]
n RRC
noise addition

DA policy	kNN
RRC + comp + noise	70.1
RRC + comp	69.6
RRC + specAugment	70.0
RRC	69.0
specAugment [20]	68.0
w/o DA	60.1

kNN

• ResNet-18 is top: larger capacity is better for unsupervised contrastive learning

Table 3. Test accuracy for linear eval & two downstream tasks.

Model	Linear	Larger no	oisy set	t Small clean set		
(weights in M)	-	random*	p-t	random	p-t	
ResNet-18 (11)	74.3	65.4	78.2	56.5	77.9	
VGG-like (0.3)	70.0	70.6	72.8	61.1	72.3	
CRNN (1)	64.4	72.0	74.2	58.7	69.1	

• Pre-trained performance \rightarrow little degradation between tasks: why? "smaller clean" task: fine tune on unseen clean data (albeit small) "larger noisy" task: fine tune on same data used for unsupervised learning

References