A Simple Fusion of Deep and Shallow Learning for Acoustic Scene Classification

Eduardo Fonseca, Rong Gong and Xavier Serra

name.surname@upf.edu

Music Technology Group, UPF, Barcelona, Spain

Universitat **Pompeu Fabra** Barcelona

MTG Music Technology Group

Motivation

- **Task:** Recognize the environment in which an audio recording has been made
- Applications:
 - automatic description
 - context-aware applications
 - intelligent wearable devices

Approaches

Feature engineering:

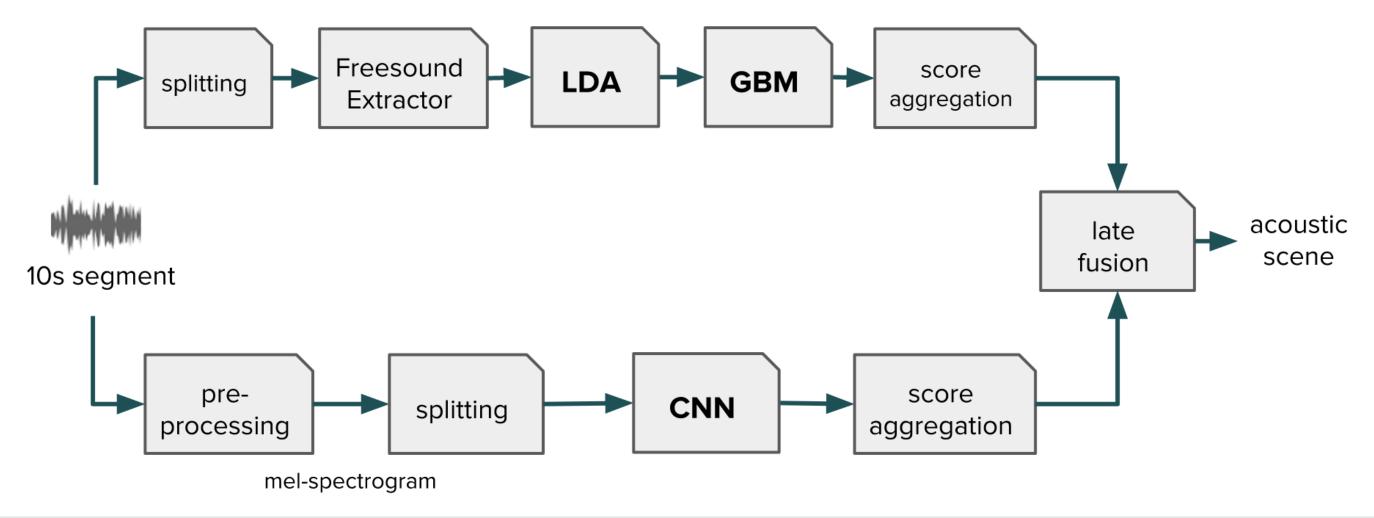
- feature extraction
- classifier

- Data driven:
 - learning representations

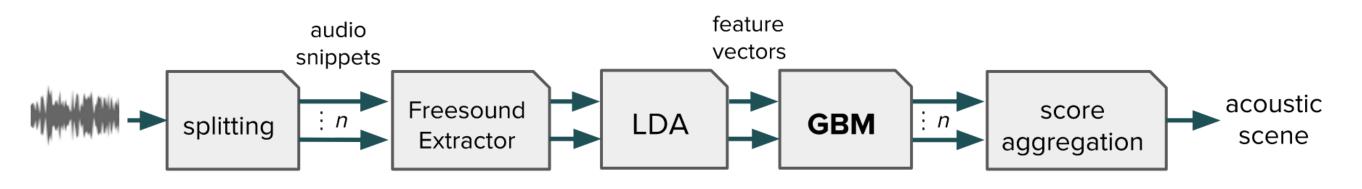
How about combining both approaches for ASC?

Proposed System

Convolutional Neural Networks (CNN)



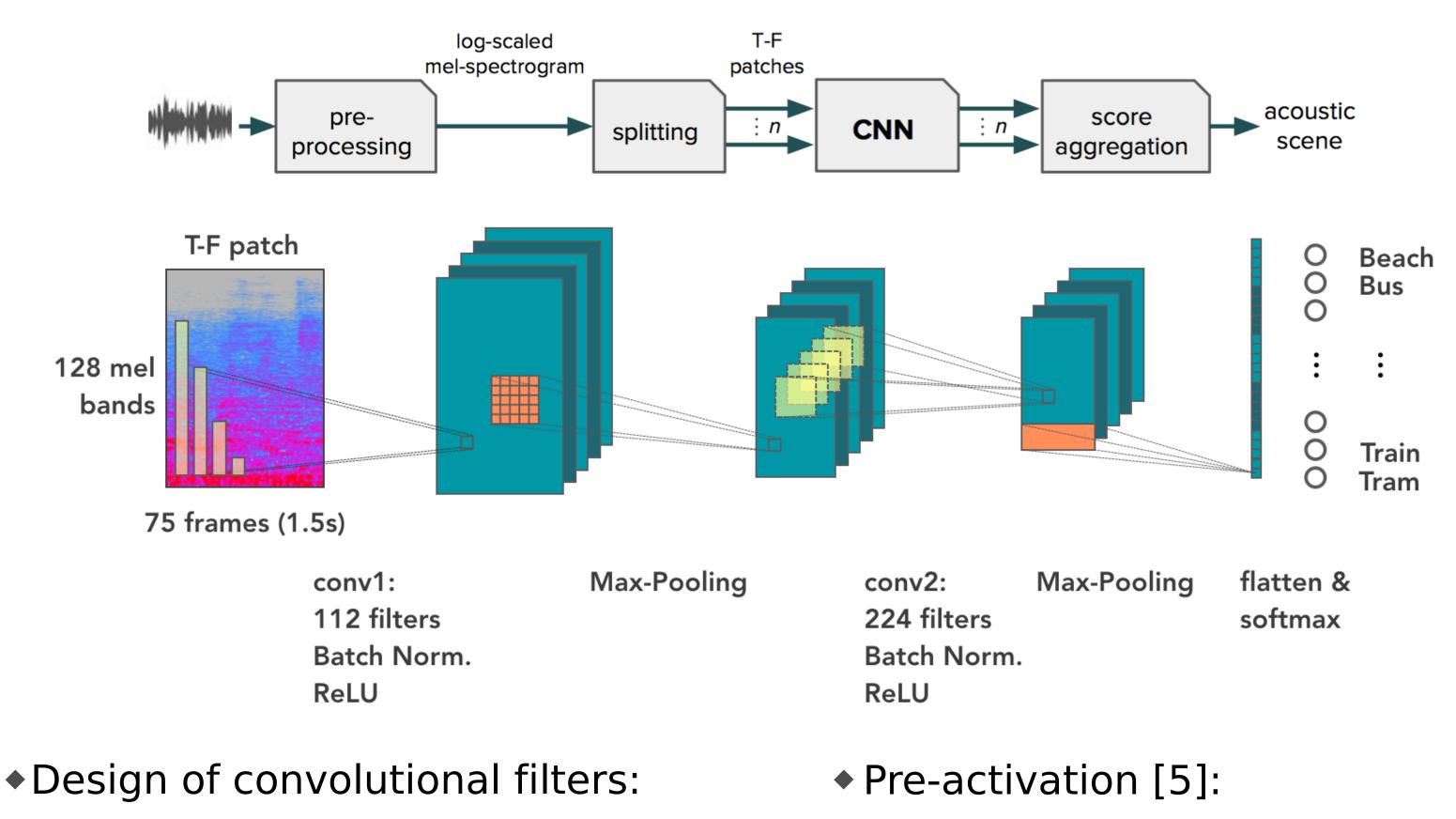
Gradient Boosting Machine (GBM)



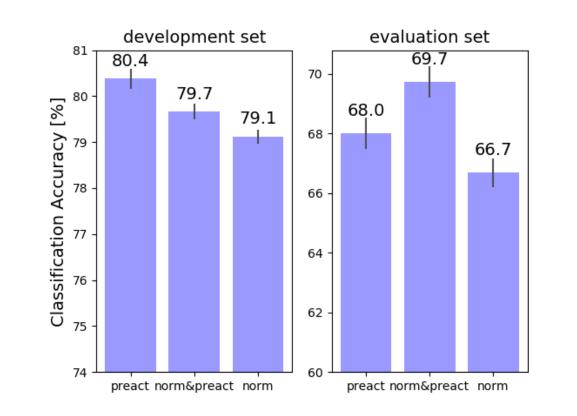
FreesoundExtractor [1] by SSENTIA

Table 1: Selected feature	ires extra	acted by Freesoun	dExtractor.
Feature name	Dim	Feature name	Dim
Bark bands energy	32	Tonal features	3

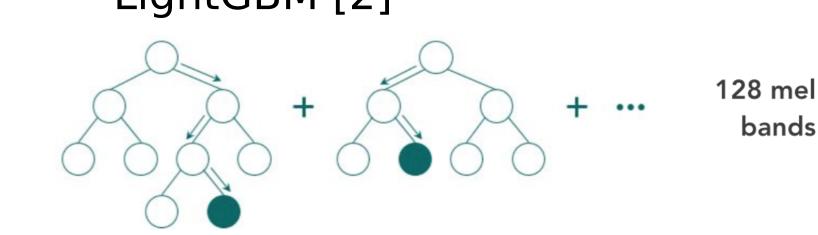
- Gradient Boosting Machine
 - multiple decision trees
 - added iteratively
 - LightGBM [2]

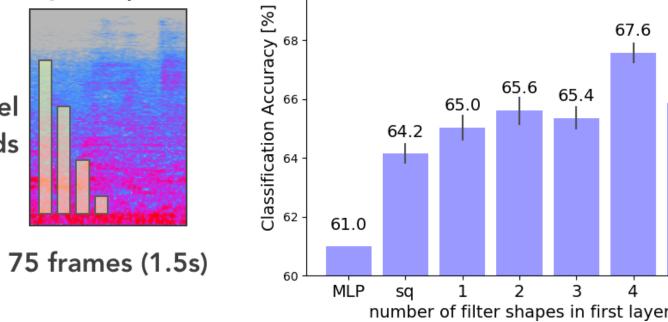


- adding Batch Norm & ReLu **before** first convolution



ERB bands energy	23	Pitch features	3
Mel bands energy	45	Silence rate	3
MFCC	13	Spectral features	32
HPCP	38	GFCC	13





evaluation set

- **spectro**-temporal patterns for ASC?

- multiple **vertical** filter shapes

T-F patch | Q = 4

bands

Dataset

- TUT Acoustic Scenes 2017 [3]:
 - 15 classes with audio segments of 10s
 - **development**: 312 segments/class & 4-fold cross-validation setup
 - evaluation: 108 segments/class
 - mismatch between dev/eval due to different recording conditions

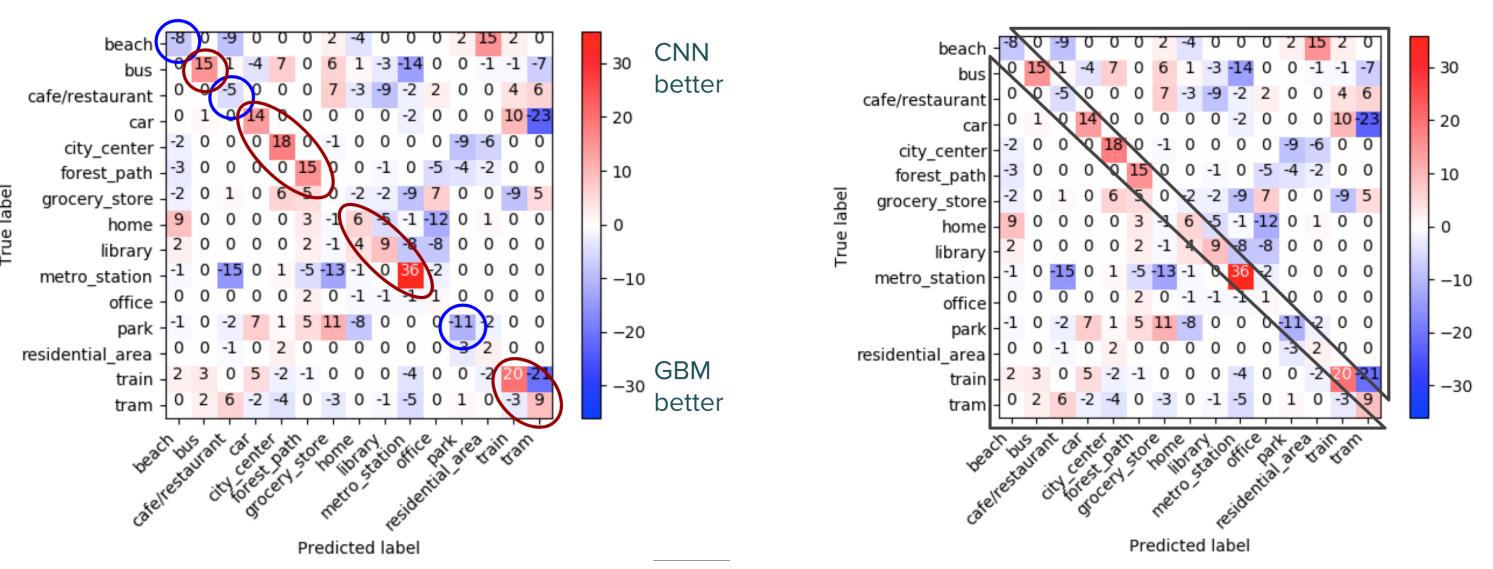
Results

Table 8. Acoustic scene classification accuracy (%).

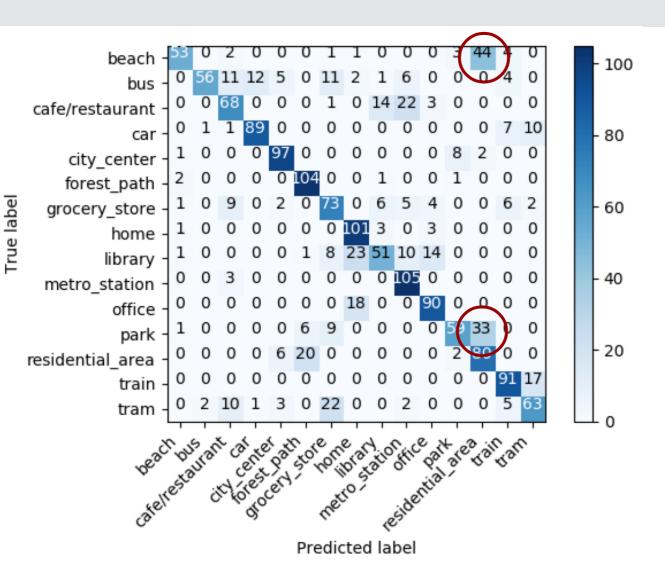
61.0
01.0
69.7
63.6
72.8

* 4-fold cross-validation ** training on full dev set

Confusion Matrix Analysis: CNN - GBM



Late Fusion



- Our method is still outperformed by some submissions to Detection and Classification of Acoustic Scenes and Events, 2017, Task 1 [4]
- But the proposed approach is simpler in comparison:
 - GANs, ensembles of 4 or more systems, data augmentation, etc.

Conclusions & Future work

- Simplicity of models:
 - GBM + out-of-box feature extractor
 - CNN + domain knowledge
- Simple late fusion approach
- How to improve?
 - individual models & measures against overfitting
 - fusion approach: join (learned) representations

providing complementary info

- CNN: softmax activation values
- GBM: prediction probabilities
- Late fusion approach:
 - means + argmax
 - stacking with logistic regression

References & Resources

[1] http://essentia.upf.edu/documentation/freesound_extractor.html

[2] https://github.com/Microsoft/LightGBM

[3] Mesaros et al. TUT database for acoustic scene classification and sound event detection.

EUSIPCO, 2016

[4] http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/

[5] Han et al. CNNs with binaural representations and background substraction for ASC. **DCASE 2017**