


DCASE Challenge

Aim to provide open data for researchers to use in their work
Encourage reproducible research

Attract new researchers into the field

Create reference points for performance comparison
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Outcome

Development of state of the art methods

Many new open datasets

Rapidly growing community of researchers
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Challenge tasks 2013 - 2019

Classical tasks:

e Acoustic scene classification - textbook example of supervised
classification (2013-2019) with increasing amount of data and acoustic
variability; mismatched devices (2018, 2019); open set classification (2019)

e Sound event detection - synthetic audio (2013-2016), real-life audio
(2013-2017), rare events (2017), weakly labeled training data (2017-2019)

e Audio tagging - domestic audio, smart cars, Freesound, urban (2016-2019)

Novel openings:
e Bird detection (2018) — mismatched training and test data, generalization
e Multichannel audio classification (2018)
e Sound event localization and detection (2019)
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DCASE 2019 Challenge

Task 1: Acoustic Scene Classification

Task 2: Audio Tagging with Noisy Labels and Minimal Supervision
Task 3: Sound Event Localization and Detection

Task 4: Sound Event Detection in Domestic Environments

Task 5: Urban Sound Tagging



Task 1: Acoustic Scene Classification

Classification of audio recordings into one
of 10 predefined acoustic scene classes:

Subtask A: Acoustic Scene Classification
Subtask B: Acoustic Scene Classification with
Mismatched Devices

e Subtask C: Open Set Acoustic Scene Classification

Data: TAU Urban Acoustic Scenes 2019

° 10 classes, 12 cities, 4 devices
e Some parallel data available for Subtask B
e Some “unknown” scenes data available for Subtask C

Closed set classification Open set classification
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Task 1: Submissions and results

Most popular task throughout the years: 146 submissions this year (98, 29, 19)
All systems easily outperformed the baseline system (small exceptions)

State of the art performance:

e 85% in matching conditions
e /5% with mismatched devices
e 67% in open set scenario
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Task 1: Results

Subtask A
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Task 1: Summary

Solution is dominated by ensemble classifiers, most of them being CNNs
Augmentation by mixup became common/default pre-processing method
Mel energies still rule the feature domain

External data usage was minimal

Subtask A attracted most participants, as a textbook classification problem
Specific methods emerged for Subtask B compared to DCASE 2018
Subtask C as the novelty item gathered least interest



Task 2: Audio tagging with noisy labels and minimal supervision

General purpose sound event recognition

Follow-up of last year’s edition
e 2x number of classes

Input

H*T*"I |

¢ more data [ Audio Tagjing System l J
e multi-class — multi-label l l l

Goal: multi-label audio tagging g[ .
e a small set of manually-labeled data 3
e a larger set of noisy-labeled data

e 80 classes of everyday sounds



-WHreesound flickr
Task 2 Dataset: FSDKaggle2019 | |

WwFSD  YFCC100M

e 80 classes of everyday sounds / 100+ hours

e Three types of labels
o test set: exhaustive
o curated train set: correct but potentially incomplete
o noisy train set: noisy (machine-generated)

curated .
noisy train set train set ! test set
:
1
YECC FSD :
:
1
19,815 clips / 80 hours 4970/10.5 | 4481/12.9 Human sounds (e.g. speech, applause)
@ Domestic sounds (e.g. microwave oven, toilet flush)
Musical instrument (e.g. accordion, acoustic guitar)
) POtentIa| aCOUS‘“C m |Smatch ® Vehicles (e.g. car passing by, motorcyc!e)
Animal sounds (e.g. cat meow, dog bark)
O Freesound - Flickr @® Natural sounds (e.g. fire crackle, raindrop)

Materials (e.g. glass shatter, fill (with liquid)) @ Mechanisms (printer, fan)



@ Research Code Competition

TaS k 2 N um be rs Freesound Audio Tagging 2019

Automatically recognize sounds and apply tags of varying natures

e Runon kaaale
e 880 teams/8618 entries:

o some teams only made few entries
o 14 teams submitting 28 systems to DCASE

e Lots of knowledge spread in the discussion forum
e Evaluation: label-weighted label-ranking average precision (lwlrap)
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Task 2 Takeaways

e Log-mel energies, waveform, CQT

e Mainly CNN/CRNN: VGG, DenseNet, ResNe(X)t, Shake-Shake,
Frequency-Aware CNNs, Squeeze-and-Excitation, EnvNet, MobileNet

e Heavy usage of ensembles (2 — 170)
e Augmenting curated train set: mix-up, SpecAugment, SpecMix, TTA

e Label noise: variety of approaches rather than common trend
o semi-supervised learning
o multi-task learning
o robust loss functions



Task 3: Sound Event Localization and Detection

Multichannel audio input
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Task 3: Sound Event Localization and Detection

Multichannel audio input
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Task 3: Sound Event Localization and Detection

Multichannel audio input

"WW Input: Multichannel audio

Sound event localization and detection system

Output:
DOA estimation Sound event detection e |dentify known set of

SPEECH Trame t sound classes
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Task 3: Dataset

e Two (four-channel) audio formats - Ambisonic and microphone array signals
o Identical sound scene, captured with different microphone-configurations
o Participants allowed to choose either or both formats
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Task 3: Dataset

e Two (four-channel) audio formats - Ambisonic and microphone array signals
o Identical sound scene, captured with different microphone-configurations
o Participants allowed to choose either or both formats

e Train methods on development set (400 mins), and test on unseen evaluation
set (100 mins)
e The recording consisted of sound events from 11 classes, each associated

with azimuth and elevation angles sampled at 10-degree resolution.
o complete azimuth
o elevation from -40 to 40 degrees
e The dataset has equal distribution of

o two-polyphonies (single and upto two overlapping sound events) and,
o impulse responses from five different indoor environments



Task 3: Top 10 team results

Systems |Format|Method | Features | ER AF(%)}DE (?);FR (%)
Kapka |[(FOA |CRNN Phase and magnitude spectrogram |0.08| 94.7 ' 3.7 | 96.8
Cao BOTH |CRNN Log-mel and intensity vectors 0.08/95.5| 5.5 | 92.2

Log-mel, Q-transform, cross-power
spectrum, and phase spectrogram
'Log-mel, phase, and magnitude
spectrogram

Jee MIC |CRNN  |Log-mel spectrogram and GCC-PHAT|0.12 | 93.7 4.2 91.8

Xue MIC  |CRNN 0.06/96.3, 9.7 | 92.3

He FOA |CRNN 0.06/96.7| 22.4 | 941

CRNN, | Log-mel, phase, and magnitude

Nguyen |[FOA POA Par. |spectrsgram 70.11 93.4‘: 5.4 {88.8
Mazzon |[BOTH ;:?NNe’t Log-mel spectrogram and GCC-PHAT| 0.1 94.2| 6.4 88.8

CRNN, Log-mel spectrogram, cochleagram, 014 91_9\ 27 908

Chang TMIC|oNN and GCC-PHAT
. ResNet- ' |
Ranjan MIC RNN Log-mel and phase spectrogram 0.16 90.9‘ 57 | 91.8
CRNN, o | |
Park BOTH . Log-mel and intensity vectors 015|919 51 | 874
TrellisNet
Baseline|FOA CRNN Phase and Magnitude Spectrogram [(0.28|85.4| 24.6 | 85.7

Baseline|MIC CRNN Phase and Magnitude Spectrogram | 0.3 |83.2| 38.1 | 83.4



Task 3: Results

e Submissions: 58 Systems - 22 Teams, 65 Authors from 24 Affiliations (8
Industry). Second popular DCASE task.
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Task 3: Results

e Submissions: 58 Systems - 22 Teams, 65 Authors from 24 Affiliations (8
Industry). Second popular DCASE task.

e Method: Except for one team which employed CNN, all teams used CRNN
(21/22) as one of their classifiers.

e Joint learning: About half the systems (10/22) employed multi-task
learning. Remaining systems, including the top system, performed different
kinds of engineering for data association of detection and localization.

e Parametric DOA estimation: Few systems (3/22) experimented using
parametric DOA estimation in association with deep-learning based SED.
Best parametric system achieved 17th position.

e Audio format: Methods proposed in both formats performed comparably. No
obvious choice.




Task 4: Sound event detection in domestic environments

Dataset: 10 s audio clips from audioset, 10 sound event classes

e \Weak labels

Speech

Diéhes

‘ Vacuum Cleaner

e Small labeled set

Unlabeled

Labeled

\

Input

|

Sound Event Detection System J

|

)
00 0O
)

each event with sound class label + onset and offset timestamps

Output




Task 4: Synthetic soundscapes

Foreground events

e Isolated events from the
Freesound dataset

e Backgrounds from SINS
and MUSAN dataset
and youtube videos.

e Distribution similar to the
real data.

e
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: Results

Task 4
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Task 4: Summary

Task 4 overview

e Steady number of participants
e Last year’s top performing system: outperformed by more than 10%

Task 4 in the workshop

e Friday 13.40 (Posters I) - Wootaek Lim: SpecAugment for sound event detection in
domestic environments using ensemble of convolutional recurrent neural networks

e Friday 16.40 (L08) - Liwei Lin, Xiangdong Wang, Hong Liu, Yueliang Qian: Guided
learning convolution system for DCASE 2019 task 4 (top performing system)

e Saturday 13.40 (Posters Il) - Chan Teck Kai, Chan Teck Kai, Chin Cheng Siong, Li
Ye: Non-negative matrix factorization-convolutional neural network (NMF-CNN) for
sound event detection




Task 5: Urban Sound Tagging

,—( small engine ) — carhorn )
e Multilabel tagging 10s urban sensor engine medium
engine alert
recordings on coarse and fine categories —
N\ ( reverse )
beeper
—( rockdrill )
- jackhammer |~ ationary )
machinery
p : ice cream
“—~ pile driver ) truck
non- non- — talking )
machinery machinery -
impact impact
human
—
chainsaw o
amplified
small / Speech
powered medium
saw rotating saw
dog
large dog barking/
rotating saw whining




Task 5: SONYC Urban Sound Tagging Dataset

Recorded from 44 acoustic sensors in New York City

e Labels:
o 23 fine-level classes
o 8 coarse-level classes

e Splits:
o 2351 recordings in train, each annotated by 3 Zooniverse volunteers
o 443 recordings in validate, annotated by the SONYC research team
o 274 recordings in test, annotated by the SONYC research team

e Additional metadata:

o SensorID
o Annotator ID
o  Proximity of each class (near/far/unsure)



Task 5: Results

Coarse-level Fine-level
Adapa 0.86 Adapa 0.751

Kim 0.825 Tompkins
Cui 0.807 Ng
Tompkins 0.788 .
Bai

Bai 0.782
Cui

Kong 0.777
Gousseau

Ng 0.77
Gousseau 0.748 Baseline
Baseline 0.742 Kong
Orga 0.562 Orga
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75

Micro-AUPRC Micro-AUPRC



DCASE 2020 Challenge

Call for task proposals is now open

- Review process: Steering Committee reviews and selects the tasks

- Proposal: maximum 2 pages, given structure

- Deadline : 1 Dec 2019

- Planned challenge opening: 1 March 2020

- Challenge coordinators will provide support and guidance during the challenge
- New: collaborative tasks are encouraged, aiming to minimize task overlap



