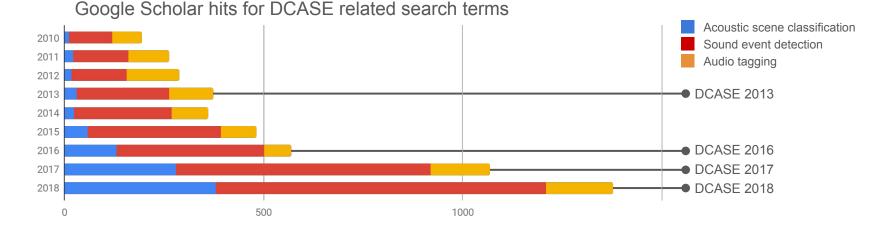


DCASE2019CHAUENCE

DCASE Challenge


- Aim to provide open data for researchers to use in their work
- Encourage reproducible research
- Attract new researchers into the field
- Create reference points for performance comparison

Participation statistics

Edition	Tasks	Entries	Teams
2013	3	31	21
2016	4	84	67
2017	4	200	74
2018	5	223	81
2019	5	311	109

Outcome

- Development of state of the art methods
- Many new open datasets
- Rapidly growing community of researchers

Challenge tasks 2013 - 2019

Classical tasks:

- Acoustic scene classification textbook example of supervised classification (2013-2019) with increasing amount of data and acoustic variability; mismatched devices (2018, 2019); open set classification (2019)
- Sound event detection synthetic audio (2013-2016), real-life audio (2013-2017), rare events (2017), weakly labeled training data (2017-2019)
- Audio tagging domestic audio, smart cars, Freesound, urban (2016-2019)

Novel openings:

- **Bird detection** (2018) mismatched training and test data, generalization
- **Multichannel** audio classification (2018)
- Sound event **localization** and detection (2019)

DCASE2019CHAULENCE

Reproducible system award

Judges' award

Awards sponsored by

DCASE 2019 Challenge

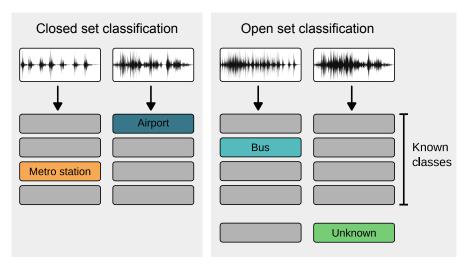
Task 1: Acoustic Scene Classification

Task 2: Audio Tagging with Noisy Labels and Minimal Supervision

Task 3: Sound Event Localization and Detection

Task 4: Sound Event Detection in Domestic Environments

Task 5: Urban Sound Tagging

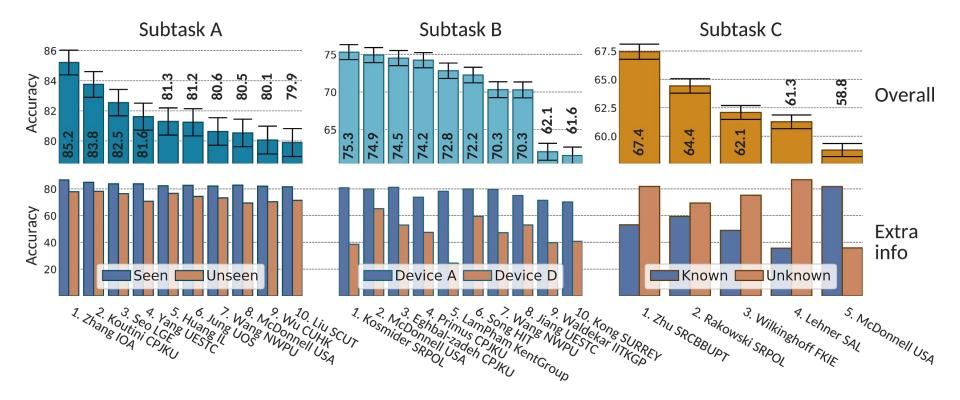

Task 1: Acoustic Scene Classification

Classification of audio recordings into one of 10 predefined acoustic scene classes:

- Subtask A: Acoustic Scene Classification
- Subtask B: Acoustic Scene Classification with Mismatched Devices
- Subtask C: Open Set Acoustic Scene Classification

Data: TAU Urban Acoustic Scenes 2019

- 10 classes, 12 cities, 4 devices
- Some parallel data available for Subtask B
- Some "unknown" scenes data available for Subtask C


Task 1: Submissions and results

Most popular task throughout the years: 146 submissions this year (98, 29, 19)

All systems easily outperformed the baseline system (small exceptions)

State of the art performance:

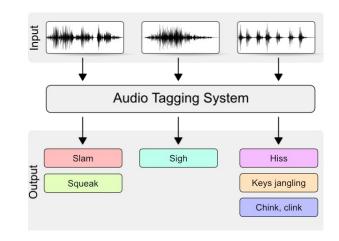
- 85% in matching conditions
- 75% with mismatched devices
- 67% in open set scenario

Task 1: Summary

- Solution is dominated by ensemble classifiers, most of them being CNNs
- Augmentation by mixup became common/default pre-processing method
- Mel energies still rule the feature domain
- External data usage was minimal

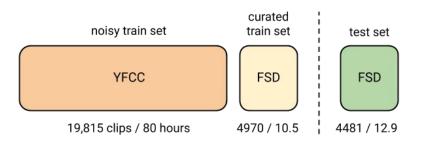
- Subtask A attracted most participants, as a textbook classification problem
- Specific methods emerged for Subtask B compared to DCASE 2018
- Subtask C as the novelty item gathered least interest

Task 2: Audio tagging with noisy labels and minimal supervision

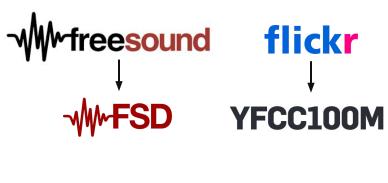

General purpose sound event recognition

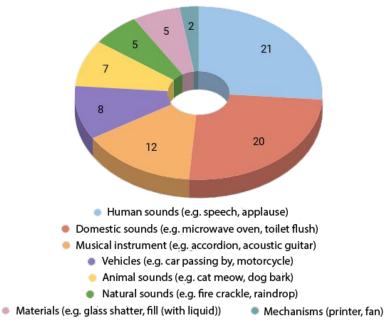
Follow-up of last year's edition

- 2x number of classes
- more data
- $\bullet \quad \text{multi-class} \to \text{multi-label}$

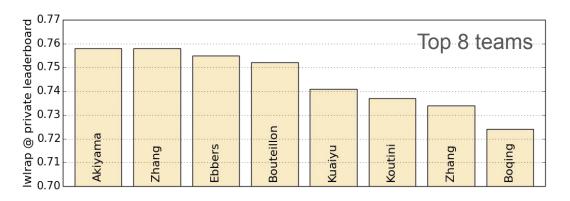

Goal: multi-label audio tagging

- a small set of manually-labeled data
- a larger set of noisy-labeled data
- 80 classes of everyday sounds




Task 2 Dataset: FSDKaggle2019

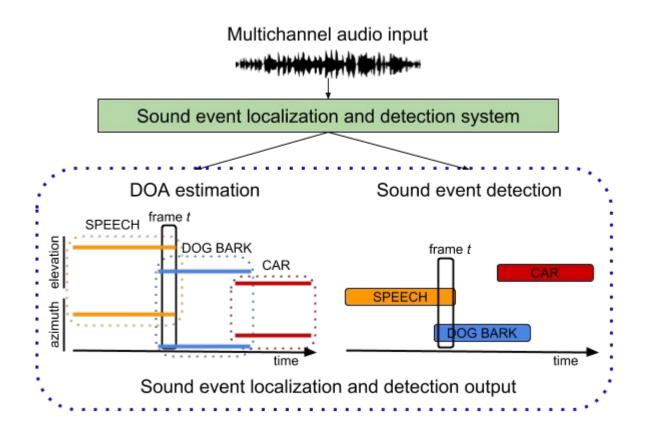
- 80 classes of everyday sounds / 100+ hours
- Three types of labels
 - test set: exhaustive
 - curated train set: correct but potentially incomplete
 - noisy train set: noisy (machine-generated)


- Potential acoustic mismatch
 - Freesound Flickr

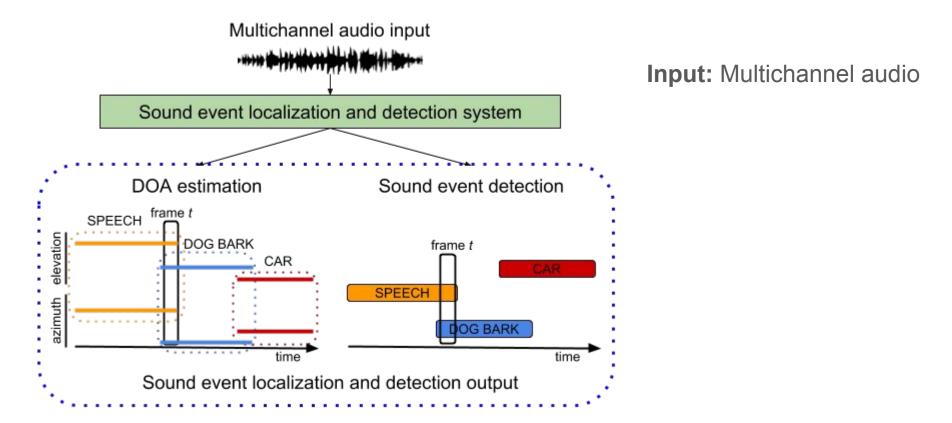
Task 2 Numbers

- Run on kaggle
- 880 teams / 8618 entries:
 - some teams only made few entries
 - 14 teams submitting 28 systems to DCASE
- Lots of knowledge spread in the discussion forum
- Evaluation: label-weighted label-ranking average precision (lwlrap)

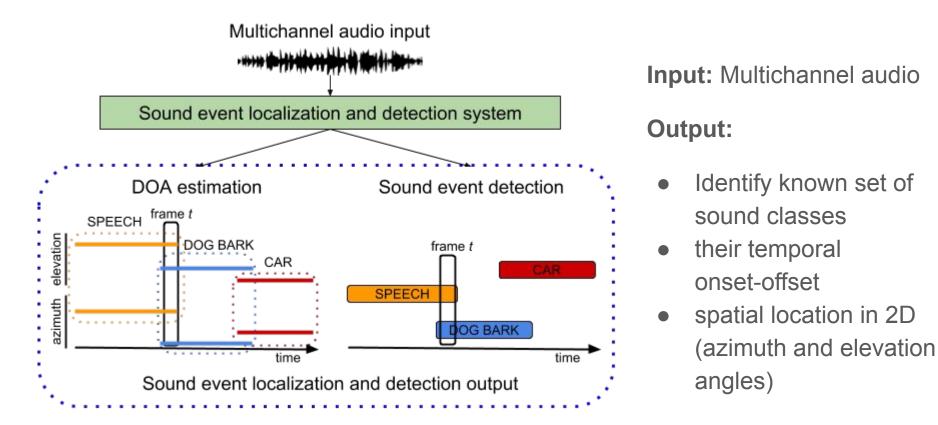
(A) Research Code Competition


Freesound Audio Tagging 2019

Automatically recognize sounds and apply tags of varying natures


Task 2 Takeaways

- Log-mel energies, waveform, CQT
- Mainly **CNN**/CRNN: VGG, DenseNet, ResNe(X)t, Shake-Shake, Frequency-Aware CNNs, Squeeze-and-Excitation, EnvNet, MobileNet
- Heavy usage of **ensembles** $(2 \rightarrow 170)$
- Augmenting curated train set: mix-up, SpecAugment, SpecMix, TTA
- Label noise: **variety** of approaches rather than common trend
 - semi-supervised learning
 - multi-task learning
 - \circ robust loss functions


Task 3: Sound Event Localization and Detection

Task 3: Sound Event Localization and Detection

Task 3: Sound Event Localization and Detection

- Two (four-channel) audio formats Ambisonic and microphone array signals
 - Identical sound scene, captured with different microphone-configurations
 - Participants allowed to choose either or both formats

- Two (four-channel) audio formats Ambisonic and microphone array signals
 - Identical sound scene, captured with different microphone-configurations
 - Participants allowed to choose either or both formats
- Train methods on development set (400 mins), and test on unseen evaluation set (100 mins)

- Two (four-channel) audio formats Ambisonic and microphone array signals
 - Identical sound scene, captured with different microphone-configurations
 - Participants allowed to choose either or both formats
- Train methods on development set (400 mins), and test on unseen evaluation set (100 mins)
- The recording consisted of sound events from 11 classes, each associated with azimuth and elevation angles sampled at 10-degree resolution.
 - complete azimuth
 - elevation from -40 to 40 degrees

- Two (four-channel) audio formats Ambisonic and microphone array signals
 - Identical sound scene, captured with different microphone-configurations
 - Participants allowed to choose either or both formats
- Train methods on development set (400 mins), and test on unseen evaluation set (100 mins)
- The recording consisted of sound events from 11 classes, each associated with azimuth and elevation angles sampled at 10-degree resolution.
 - complete azimuth
 - elevation from -40 to 40 degrees
- The dataset has equal distribution of
 - two-polyphonies (single and upto two overlapping sound events) and,
 - impulse responses from five different indoor environments

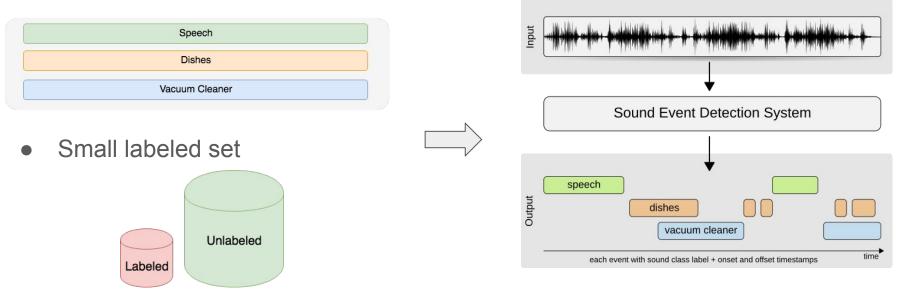
Task 3: Top 10 team results

Systems	Format	Method	Features	ER	F (%)	DE (°)	FR (%)
Kapka	FOA	CRNN	Phase and magnitude spectrogram	0.08	94.7	3.7	96.8
Cao	BOTH	CRNN	Log-mel and intensity vectors	0.08	95.5	5.5	92.2
Xue	MIC	CRNN	Log-mel, Q-transform, cross-power spectrum, and phase spectrogram	0.06	96.3	9.7	92.3
He	FOA	CRNN	Log-mel, phase, and magnitude spectrogram	0.06	96.7	22.4	94.1
Jee	MIC	CRNN	Log-mel spectrogram and GCC-PHAT	0.12	93.7	4.2	91.8
Nguyen FOA	FOA	CRNN,	Log-mel, phase, and magnitude	0.11	93.4	5.4	88.8
	FUA	DOA Par.	spectrogram				
Mazzon	BOTH	CRNN, ResNet	Log-mel spectrogram and GCC-PHAT	0.1	94.2	6.4	88.8
Chang	MIC	CRNN, CNN	Log-mel spectrogram, cochleagram, and GCC-PHAT	0.14	91.9	2.7	90.8
Ranjan	MIC	ResNet- RNN	Log-mel and phase spectrogram	0.16	90.9	5.7	91.8
Park E	BOTH	CRNN,	Log-mel and intensity vectors	0.15	01.0	E 1	074
		TrellisNet		0.15	91.9	5.1	87.4
Baseline	FOA	CRNN	Phase and Magnitude Spectrogram	0.28	85.4	24.6	85.7
Baseline	MIC	CRNN	Phase and Magnitude Spectrogram	0.3	83.2	38.1	83.4

• <u>Submissions</u>: 58 Systems - 22 Teams, 65 Authors from 24 Affiliations (8 Industry). **Second popular DCASE task**.

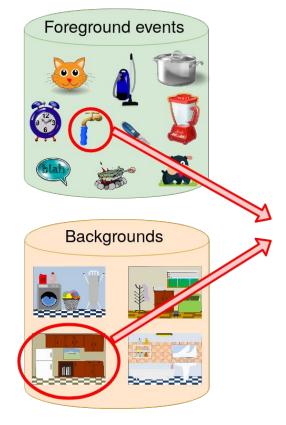
- <u>Submissions</u>: 58 Systems 22 Teams, 65 Authors from 24 Affiliations (8 Industry). **Second popular DCASE task**.
- <u>Method</u>: Except for one team which employed CNN, all teams used CRNN (21/22) as one of their classifiers.

- <u>Submissions</u>: 58 Systems 22 Teams, 65 Authors from 24 Affiliations (8 Industry). **Second popular DCASE task**.
- <u>Method</u>: Except for one team which employed CNN, all teams used CRNN (21/22) as one of their classifiers.
- <u>Joint learning</u>: About half the systems (10/22) employed multi-task learning. Remaining systems, including the top system, performed different kinds of engineering for data association of detection and localization.

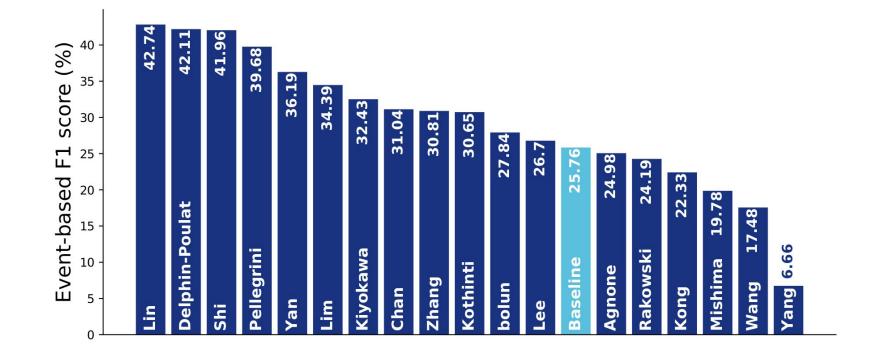

- <u>Submissions</u>: 58 Systems 22 Teams, 65 Authors from 24 Affiliations (8 Industry). **Second popular DCASE task**.
- <u>Method</u>: Except for one team which employed CNN, all teams used CRNN (21/22) as one of their classifiers.
- <u>Joint learning</u>: About half the systems (10/22) employed multi-task learning. Remaining systems, including the top system, performed different kinds of engineering for data association of detection and localization.
- <u>Parametric DOA estimation</u>: Few systems (3/22) experimented using parametric DOA estimation in association with deep-learning based SED.
 Best parametric system achieved **17th position**.

- <u>Submissions</u>: 58 Systems 22 Teams, 65 Authors from 24 Affiliations (8 Industry). **Second popular DCASE task**.
- <u>Method</u>: Except for one team which employed CNN, all teams used CRNN (21/22) as one of their classifiers.
- <u>Joint learning</u>: About half the systems (10/22) employed multi-task learning. Remaining systems, including the top system, performed different kinds of engineering for data association of detection and localization.
- <u>Parametric DOA estimation</u>: Few systems (3/22) experimented using parametric DOA estimation in association with deep-learning based SED.
 Best parametric system achieved **17th position**.
- <u>Audio format:</u> Methods proposed in both formats performed comparably. **No obvious choice.**

Task 4: Sound event detection in domestic environments


Dataset: 10 s audio clips from audioset, 10 sound event classes

• Weak labels



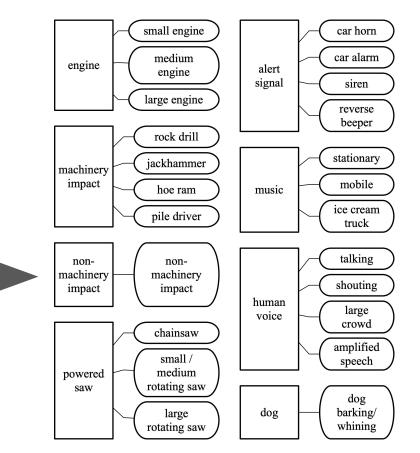
Task 4: Synthetic soundscapes

- Isolated events from the Freesound dataset
- Backgrounds from SINS and MUSAN dataset and youtube videos.
- Distribution similar to the real data.

Task 4: Summary

Task 4 overview

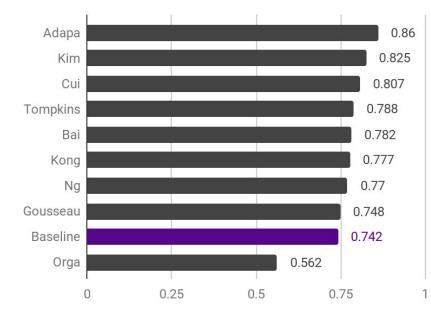
- Steady number of participants
- Last year's top performing system: outperformed by more than 10%


Task 4 in the workshop

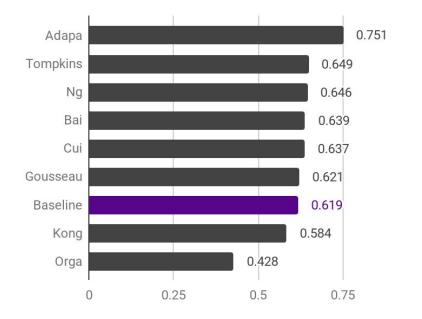
- Friday 13.40 (Posters I) Wootaek Lim: SpecAugment for sound event detection in domestic environments using ensemble of convolutional recurrent neural networks
- Friday 16.40 (L08) Liwei Lin, Xiangdong Wang, Hong Liu, Yueliang Qian: Guided learning convolution system for DCASE 2019 task 4 (top performing system)
- Saturday 13.40 (Posters II) Chan Teck Kai, Chan Teck Kai, Chin Cheng Siong, Li Ye: Non-negative matrix factorization-convolutional neural network (NMF-CNN) for sound event detection

Task 5: Urban Sound Tagging

• Multilabel tagging 10s urban sensor recordings on coarse and fine categories



Task 5: SONYC Urban Sound Tagging Dataset


Recorded from 44 acoustic sensors in New York City

- Labels:
 - 23 fine-level classes
 - 8 coarse-level classes
- Splits:
 - 2351 recordings in *train*, each annotated by 3 Zooniverse volunteers
 - 443 recordings in *validate*, annotated by the SONYC research team
 - 274 recordings in *test*, annotated by the SONYC research team
- Additional metadata:
 - Sensor ID
 - Annotator ID
 - Proximity of each class (*near/far/unsure*)

Coarse-level

Fine-level

Micro-AUPRC

Micro-AUPRC

DCASE 2020 Challenge

Call for task proposals is now open

- Review process: Steering Committee reviews and selects the tasks
- Proposal: maximum 2 pages, given structure
- Deadline : 1 Dec 2019
- Planned challenge opening: 1 March 2020
- Challenge coordinators will provide support and guidance during the challenge
- New: collaborative tasks are encouraged, aiming to minimize task overlap