Unsupervised Contrastive Learning of Sound Event Representations

Eduardo Fonseca¹*, Diego Ortego²*, Kevin McGuinness², Noel E. O'Connor² and Xavier Serra¹

> *Equal contribution - Paper ID: 4255 https://github.com/edufonseca/uclser20

Universitat M Pompeu Fabra Mu Barcelona Gr

MTG Music Technology Group

echnology Insig

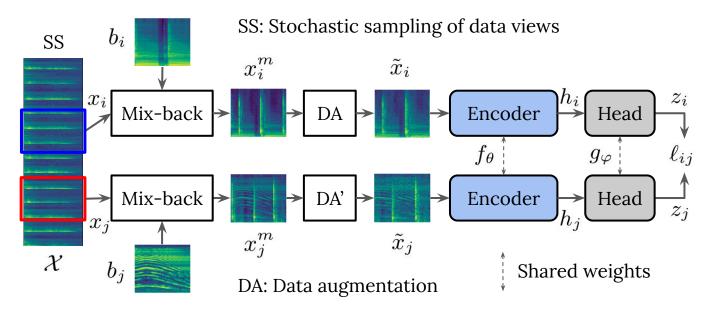
Context

- Task: learn sound event representation in unsupervised fashion
- **Motivation**: common scenario in sound event research
 - few manually labeled data but abundant unlabeled data
- Self-supervised learning
 - Learn representation from unlabeled data without explicit labels
 - \neg Generate pseudo-labels, ŷ, from the data itself
 - → Key factor: design **proxy task** to generate $\hat{y} \rightarrow$ useful representations emerge

Contrastive Representation Learning

- Contrastive learning is learning by comparing
 - We compare between pairs of input examples:
 - positive pairs of similar inputs
 - negative pairs of unrelated inputs
- Goal is an embedding space where representations ...
 - → of similar examples → close together
 - → of dissimilar examples → further away

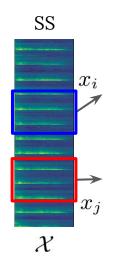
Proposed Approach: Overview



Proxy task

- Similarity maximization, inspired by SimCLR [1]
 - maximize similarity between differently augmented views of sound events
- Input: log-mel spectrograms
- Output: embedding representations h

Proposed Approach: Sampling TF patches

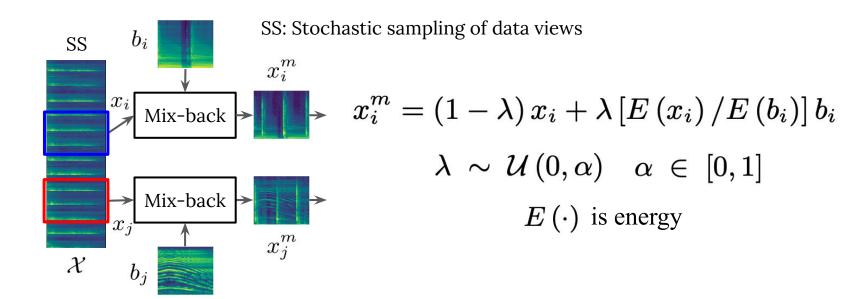


SS: Stochastic sampling of data views

Sampling TF patches (aka Temporal Proximity [2])

- Sample two patches (views) at random within audio clip log-mel spectrogram
- → TxF=101x96
- → Temporal coherence among neighbouring patches → natural data augmentation
 - same source / different pattern
 - different source related semantically

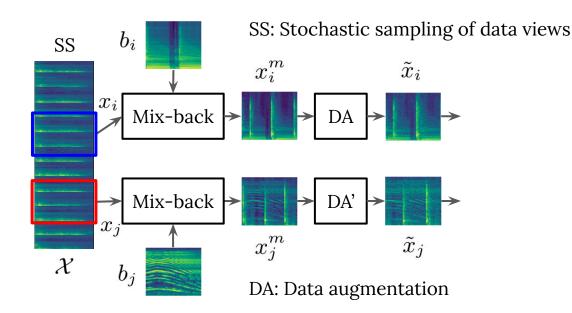
Proposed Approach: *mix-back*



Mix incoming patch with a background patch

- \rightarrow Goal:
 - reduce mutual information via mixing with random backgrounds
 - keeping relevant semantics by sound transparency
- \rightarrow Energy (E) adjustment ensures that x_i is always dominant over b_i
- Prevent aggressive transformations that may make the proxy task too difficult

Proposed Approach: Data Augmentation

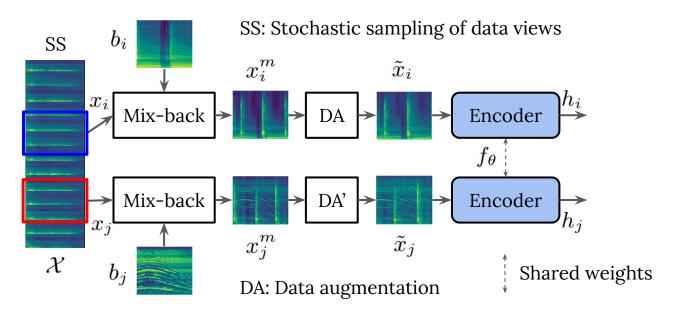


Stochastic Data Augmentation

- Directly over TF patches
- Simple for on-the-fly computation
- Random resized cropping (RRC), compression, Gaussian noise addition,
 specAugment [3], random time/frequency shifts, Gaussian blurring
- Hyper-parameters randomly sampled from a distribution for each patch

7

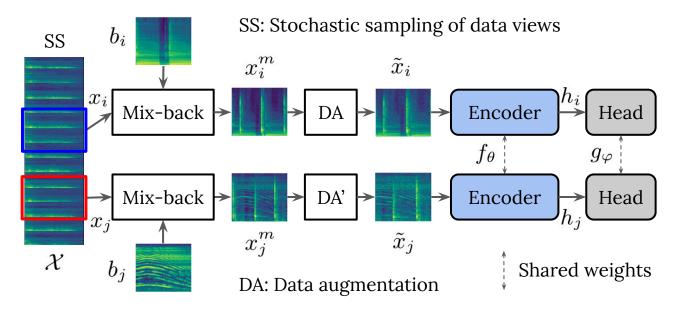
Proposed Approach: Encoder



Convolutional encoder

- Extract low-dimensional embeddings h
- \neg Once the training is over, *h* is used for downstream tasks
- ResNet-18 / VGG-like / CRNN after removing classification layer

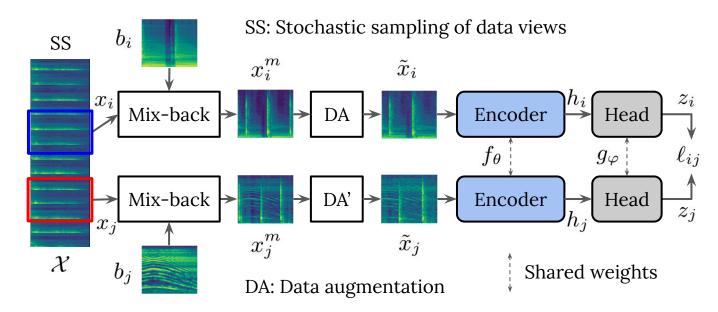
Proposed Approach: Head



Projection Head

- \rightarrow Map *h* to L2-normalized metric embedding *z*, where loss is applied
- MLP w/ one hidden layer + BNorm + ReLU

Proposed Approach: Contrastive Loss



Normalized temperature-scaled cross-entropy (NT-Xent) loss [1]

- Softmax structure
- ightarrow Scoring function: cosine similarity with temperature scaling au
- Maximize similarity between differently augmented views

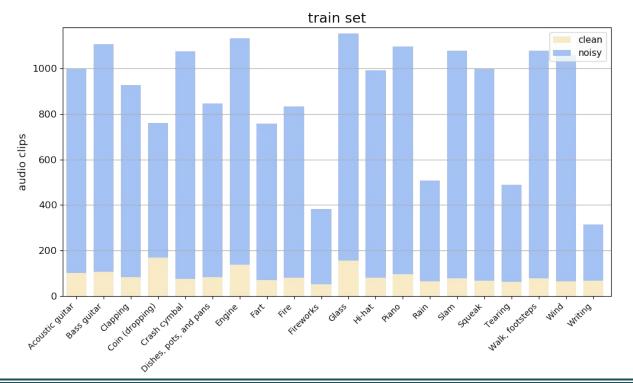
$$\ell_{ij} = -\log \frac{\exp\left(sim(z_i, z_j)/\tau\right)}{\sum_{v=1}^{2N} \mathbb{1}_{v\neq i} \exp\left(sim(z_i, z_v)/\tau\right)}$$

Evaluation: FSDnoisy18k dataset

www.eduardofonseca.net/FSDnoisy18k/

- → 20 classes / 18k clips / 42.5 h [4]
- → singly-labeled data → accuracy as metric
- proportion train_noisy / train_clean = 90% / 10%
- per-class varying degree of label noise





Evaluation Methodology

Two stages

- 1. Unsupervised representation learning
 - train on train_noisy without labels
 - validate on train_clean using labels in kNN Evaluation:
 - estimate representation *z* for each patch
 - pairwise cosine similarity with rest of patches
 - prediction by majority voting across k=200 neighbouring labels

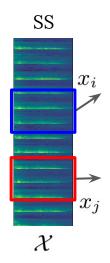
Evaluation Methodology

Two stages

- **1. Unsupervised representation learning**
 - train on train_noisy without labels
 - validate on *train_clean* using labels in kNN Evaluation:
 - estimate representation *z* for each patch
 - pairwise cosine similarity with rest of patches
 - prediction by majority voting across k=200 neighbouring labels
- 2. Evaluation of the representation using supervised tasks (w/ labels)
 - Linear Evaluation: train additional linear classifier on top of pre-trained unsupervised embeddings
 - train on train_noisy / validate on train_clean
 - End-to-end Fine Tuning: fine-tune model on two downstream tasks after initializing with pre-trained weights:
 - 1. train on train_noisy / validate on train_clean
 - 2. train on train_clean (allow 15% for validation)

Ablation Study: Sampling TF patches

- best: sampling at random
- → worst: using same patch
- → overlapping patches (d < 101 frames) → detrimental</p>
- → results accord with [5]
- effective method used in most contrastive learning approaches for audio representation learning



Sampling method	kNN	Sampling method	kNN
Sampling at random	70.1	d = 125	67.9
d = 0 (same patch)	51.1	d = 200	69.9
d = 25	61.5	d = 300	68.5
d = 75	65.1	d = 400	69.7

Table 1. kNN val accuracy for several ways of sampling TF patches.

Ablation Study: mix-back

- lightly mixing patches with real backgrounds from unrelated patches helps
- → adjusting the energy is also beneficial
 - foreground patch is dominant over the background patch
 - preventing aggressive transforms & keeping semantics

Table 2. kNN val accuracy for several mix-back and data augmentation (DA) settings.

Mix-back setting (α)	kNN
w/ E adjustment (0.05) w/o E adjustment (0.02)	70.1 66.2
w/o mix-back	63.3

Ablation Study: Data Augmentation (DA)

- → Each row: best result after sweeping the corresponding parameters
- 1. Explore DAs applied individually
 - random resized cropping: small stretch in time/freq & small freq transposition
 - SpecAugment (time/freq masking) [3]

Table 2. kNN val accuracy for several mix-back and data augmentation (DA) settings.

DA policy	kNN
RRC + comp + noise	70.1
RRC + comp	69.6
RRC + specAugment	70.0
RRC	69.0
specAugment [20]	68.0
w/o DA	60.1

[3] Park et al., **SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition**. InterSpeech 2019

16

Ablation Study: Data Augmentation (DA)

- → Each row: best result after sweeping the corresponding parameters
- 1. Explore DAs applied **individually**
 - random resized cropping: small stretch in time/freq & small freq transposition
 - SpecAugment (time/freq masking) [3]
- 2. Explore DA compositions based on RRC
 - RRC + compression + Gaussian noise addition
 - RRC + SpecAugment
 - more exhaustive exploration of the DA compositions -> better results

Table 2. kNN val accuracy for several mix-back and data augmentation (DA) settings.

DA policy	kNN
RRC + comp + noise	70.1
RRC + comp	69.6
RRC + specAugment	70.0
RRC	69.0
specAugment [20]	68.0
w/o DA	60.1

17

[3] Park et al., **SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition**. InterSpeech 2019

Supervised baselines & Linear Evaluation

- → Supervised baselines: CRNN ≈ VGG-like > ResNet-18
 - ResNet-18: large capacity for not so much data & noisy labels

Model	Linear	Supervised baseline]																																												14. A 14.		•	e	.(1	ľ	i	l	1	•]	e	•	5	S	ł	a	2)))	b	b	b	ł	ł	ł	ł]]]		l	l	l	l	l	l	l	l	l	l	l]]	ł
(weights in M)	Ξ		Ι				I			I	I																																																																																			
ResNet-18 (11)	74.3	65.4				l	l			l	l								ſ		ſ																																																																									
VGG-like (0.3)	70.0	70.6		L			l			l	l								ſ		ĺ																																																																									
CRNN (1)	64.4	72.0																			ſ																																																																									

Supervised baselines & Linear Evaluation

- → Supervised baselines: CRNN ≈ VGG-like > ResNet-18
 - ResNet-18: large capacity for not so much data & noisy labels
- → Linear Evaluation:
 - ResNet-18 is top
 - larger capacity is better for unsupervised contrastive learning
 - exceeds supervised performance
 - VGG-like & CRNN: most of the supervised performance is recovered

Model	Linear	Supervised baseline
(weights in M)	-	
ResNet-18 (11)	74.3	65.4
VGG-like (0.3)	70.0	70.6
CRNN (1)	64.4	72.0

Fine tuning on downstream tasks after initializing with pre-trained weights

- → Goal: measure benefit wrt training from scratch in noisy- & small-data regimes
- Unsupervised contrastive pre-training is best in all cases
- → ResNet-18:
 - lowest accuracy trained from scratch (limited by data or label quality)
 - top accuracy w/ unsupervised pre-training (alleviate these problems)
- → Greater improvements in "smaller clean" task

Model Linear	Larger no	oisy set	Small cle	an set
(weights in M)	random*	p-t	random	p-t
ResNet-18 (11)	65.4	78.2	56.5	77.9
VGG-like (0.3)	70.6	72.8	61.1	72.3
CRNN (1)	72.0	74.2	58.7	69.1

Fine tuning on downstream tasks after initializing with pre-trained weights

- Pre-trained performance + little degradation between tasks: why?
 - "smaller clean" task: fine tune on unseen clean data (albeit small)
 - "larger noisy" task: fine tune on same data used for unsupervised learning (now affected by label noise)

Model Linear	Larger no	isy set	Small cle	an set
(weights in M)	random*	p-t	random	p-t
ResNet-18 (11)	65.4	78.2	56.5	77.9
VGG-like (0.3)	70.6	72.8	61.1	72.3
CRNN (1)	72.0	74.2	58.7	69.1

Summary & Takeaways

- Framework for unsupervised contrastive learning of sound event representations
- Maximize similarity between differently augmented views of the same spectrogram
- Successful representation learning by tuning compound
 - positive patch sampling & mix-back & data augmentation
- Unsupervised contrastive pre-training can
 - mitigate the impact of data scarcity
 - increase robustness against noisy labels
- Fine tuning a model initialized with pretrained weights outperforms supervised baselines

Unsupervised Contrastive Learning of Sound Event Representations Thank you! O/A?

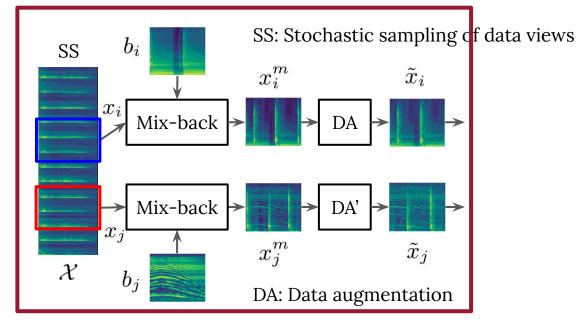
Eduardo Fonseca¹*, Diego Ortego²*, Kevin McGuinness², Noel E. O'Connor² and Xavier Serra¹

> *Equal contribution - Paper ID: 4255 https://github.com/edufonseca/uclser20

Universitat MTG Pompeu Fabra Music Technology Barcelona

Group

Proposed Approach: Data Augmentation



Generating views for contrastive learning of audio representations

- 1. Sampling patches
- 2. mix-back
- 3. Basic augmentations

- → Framework is **sensitive**
 - compositions, parameter tuning, $\pmb{ au}$, etc
 - not one key ingredient but a compound

- Framework is sensitive
 - compositions, parameter tuning, $\pmb{\tau}$, etc
 - not one key ingredient but a compound
- Composing augmentations helps, but done carefully
 - ordering of the DAs matter
 - joining individually-tuned DAs can be suboptimal (affect each other)
 - tuning composition can be computationally intensive

- → Framework is **sensitive**
 - compositions, parameter tuning, $\pmb{ au}$, etc
 - not one key ingredient but a compound
- Composing augmentations helps, but done carefully
 - ordering of the DAs matter
 - joining individually-tuned DAs can be suboptimal (affect each other)
 - tuning composition can be computationally intensive
- Hypothesis: *shortcuts* mitigated by sampling patches and mix-back
 - time-frequency patterns used to lower the loss w/o useful learning
 - recording gear, room acoustics, background, ...

- → Framework is **sensitive**
 - compositions, parameter tuning, $\pmb{ au}$, etc
 - not one key ingredient but a compound
- Composing augmentations helps, but done carefully
 - ordering of the DAs matter
 - joining individually-tuned DAs can be suboptimal (affect each other)
 - tuning composition can be computationally intensive
- Hypothesis: *shortcuts* mitigated by sampling patches and mix-back
 - time-frequency patterns used to lower the loss w/o useful learning
 - recording gear, room acoustics, background, ...
- → Batch size:
 - common knowledge: the larger the better (more negative examples)
 - our case: batch size of 128 (worse scenario)