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Context

e Task: learn sound event representation in unsupervised fashion

e Motivation: common scenario in sound event research
- few manually labeled data but abundant unlabeled data

e Self-supervised learning
-~ Learn representation from unlabeled data without explicit labels
-~ Generate pseudo-labels, y, from the data itself

-~ Key factor: design proxy task to generate y » useful representations emerge




Contrastive Representation Learning

e Contrastive learning is learning by comparing
-~  We compare between pairs of input examples:
= positive pairs of similar inputs

= hegative pairs of unrelated inputs

e Goalis an embedding space where representations ...
-~ of similar examples » close together

-~ of dissimilar examples » further away




Proposed Approach: Overview

SS: Stochastic sampling of data views
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Proxy task
-~ Similarity maximization, inspired by SimCLR [1]
= Maximize similarity between differently augmented views of sound events
-~ Input: log-mel spectrograms
-~ Qutput: embedding representations h

[1] Chen et al., A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020




Proposed Approach: Sampling TF patches

SS: Stochastic sampling of data views

Sampling TF patches (aka Temporal Proximity [2])
-~ Sample two patches (views) at random within audio clip log-mel spectrogram
-~ TxF=101x96
- Temporal coherence among neighbouring patches = natural data augmentation
= Same source / different pattern
= different source related semantically

[2] Jansen et al., Unsupervised learning of semantic audio representations. ICASSP 2018




Proposed Approach: mix-back

5 - SS: Stochastic sampling of data views
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Mix-back

Mix incoming patch with a background patch
-~ Goal:
s reduce mutual information via mixing with random backgrounds
m keeping relevant semantics by sound transparency
= Energy (E) adjustment ensures that x is always dominant over b,
-~ Prevent aggressive transformations that may make the proxy task too difficult



Proposed Approach: Data Augmentation
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DA: Data augmentation

Stochastic Data Augmentation

N
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Directly over TF patches

Simple for on-the-fly computation

Random resized cropping (RRC), compression, Gaussian noise addition,
specAugment [3], random time/frequency shifts, Gaussian blurring
Hyper-parameters randomly sampled from a distribution for each patch

[3] Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition.

InterSpeech 2019



Proposed Approach: Encoder
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Convolutional encoder
-~ Extract low-dimensional embeddings h
-~ Once the training is over, h is used for downstream tasks
-~ ResNet-18 / VGG-like / CRNN after removing classification layer



Proposed Approach: Head

SS: Stochastic sampling of data views
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Projection Head
-~ Map h to L2-normalized metric embedding z, where loss is applied
-~ MLP w/ one hidden layer + BNorm + RelLU



Proposed Approach: Contrastive Loss

SS: Stochastic sampling of data views
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Normalized temperature-scaled cross-entropy (NT-Xent) loss [1]
-~ Softmax structure
-~ Scoring function: cosine similarity with temperature scaling r

- Maximize similarity between differently augmented views

exp (sim(z;,2;)/T)
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[1] Chen et al., A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020




Fvaluation: FSDnoisy18k dataset

www.eduardofonseca.net/FSDnoisy18k/
—~ 20 classes / 18k clips / 42.5 h [4] noisy clean
-~ singly-labeled data =+ accuracy as metric

train set test set

15,813 clips / 38.8 hours 1772/ 2.4 947 /1.4
-~ proportion train_noisy / train_clean = 90% / 10%

-~ per-class varying degree of label noise
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[4] Fonseca et al. Learning Sound Event Classifiers from Web Audio with Noisy Labels. ICASSP 2019



http://www.eduardofonseca.net/FSDnoisy18k/

train set test set

Fvaluation Methodology [ D

Two stages

. . . 15,813 clips / 38.8 hours 1772/ 2.4 947 /1.4
1. Unsupervised representation learning

m train on train_noisy without labels
= Vvalidate on train_clean using labels in kNN Evaluation:
o estimate representation z for each patch

e pairwise cosine similarity with rest of patches

e prediction by majority voting across k=200 neighbouring labels




train set test set

Fvaluation Methodology [ D

Two stages

. . . 15,813 clips / 38.8 hours 1772/ 2.4 947 /1.4
1. Unsupervised representation learning

m train on train_noisy without labels

= Vvalidate on train_clean using labels in kNN Evaluation:
o estimate representation z for each patch
e pairwise cosine similarity with rest of patches

e prediction by majority voting across k=200 neighbouring labels

2. Evaluation of the representation using supervised tasks (w/ labels)
= Linear Evaluation: train additional linear classifier on top of pre-trained
unsupervised embeddings
e train on train_noisy / validate on train_clean
= End-to-end Fine Tuning: fine-tune model on two downstream tasks after
initializing with pre-trained weights:
1. train on train_noisy / validate on train_clean

2. train on train_clean (allow 15% for validation)




Ablation Study: Sampling TF patches

-~ best: sampling at random

—~ worst: using same patch

-~ overlapping patches (d <101 frames) » detrimental

-~ results accord with [5]

-~ effective method used in most contrastive learning approaches

for audio representation learning

Table 1. kNN val accuracy for several ways of sampling TF patches.

Sampling method kNN

Sampling method kNN

Sampling at random  70.1
d = 0 (same patch) 51.1

d=25 61.5
d="175 65.1

d =125 67.9
d = 200 69.9
d =300 68.5
d = 400 69.7

[5] Tian et al., What Makes for Good Views for Contrastive Learning? NeurlPS 2020




Ablation Study: mix-back

N

lightly mixing patches with real backgrounds from unrelated patches helps
-~ adjusting the energy is also beneficial

s foreground patch is dominant over the background patch

m preventing aggressive transforms & keeping semantics

Table 2. kNN val accuracy for several mix-back and data augmenta-
tion (DA) settings.

Mix-back setting () kNN

w/ E adjustment (0.05) 70.1
w/o E adjustment (0.02) 66.2
w/o mix-back 63.3




Ablation Study: Data Augmentation (DA]

N

Each row: best result after sweeping the corresponding parameters
1. Explore DAs applied individually

= random resized cropping: small stretch in time/freq & small freq transposition
»  SpecAugment (time/freq masking) [3]

Table 2. kNN val accuracy for several mix-back and data augmenta-
tion (DA) settings.

DA policy kNN
RRC + comp + noise  70.1
RRC + comp 69.6
RRC + specAugment  70.0
RRC 69.0
specAugment [20] 68.0
w/o0 DA 60.1

[3] Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition.

InterSpeech 2019 1C



Ablation Study: Data Augmentation (DA]

N

Each row: best result after sweeping the corresponding parameters
1. Explore DAs applied individually

= random resized cropping: small stretch in time/freq & small freq transposition
»  SpecAugment (time/freq masking) [3]
2. Explore DA compositions based on RRC
= RRC + compression + Gaussian noise addition
= RRC + SpecAugment

= Mmore exhaustive exploration of the DA compositions = better results

Table 2. kNN val accuracy for several mix-back and data augmenta-
tion (DA) settings.

DA policy kNN
RRC + comp + noise ~ 70.1
RRC + comp 69.6
RRC + specAugment  70.0
RRC 69.0
specAugment [20] 68.0
w/o0 DA 60.1

[3] Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition.

InterSpeech 2019



Fvaluation of Learned Representations

Supervised baselines & Linear Evaluation
-~ Supervised baselines: CRNN = VGG-like > ResNet-18

» ResNet-18: large capacity for not so much data & noisy labels

Model Linear |Supervised baseline
(weights in M) -

ResNet-18 (11), 74.3 65.4

VGG-like (0.3)] 70.0 70.6

CRNN (1) 64.4 72.0




Fvaluation of Learned Representations

Supervised baselines & Linear Evaluation
-~ Supervised baselines: CRNN = VGG-like > ResNet-18
» ResNet-18: large capacity for not so much data & noisy labels
-~ Linear Evaluation:
= ResNet-18 is top
e larger capacity is better for unsupervised contrastive learning
o exceeds supervised performance

s VGG-like & CRNN: most of the supervised performance is recovered

Model Linear |Supervised baseline |
(weights in M) -

ResNet-18 (11), 74.3 65.4

VGG-like (0.3)] 70.0 70.6

CRNN (1) 64.4 72.0




Fvaluation of Learned Representations

Fine tuning on downstream tasks after initializing with pre-trained weights
-~ Goal: measure benefit wrt training from scratch in noisy- & small-data regimes
-~ Unsupervised contrastive pre-training is best in all cases

-~ ResNet-18:
= lowest accuracy trained from scratch (limited by data or label quality)

= top accuracy w/ unsupervised pre-training (alleviate these problems)

-~ Greater improvements in “smaller clean” task

Model Linear | Larger noisy set | Small clean set
(weights in M) random*  p-t | random p-t
ResNet-18 (11) 65.4 78.2 56.5 77.9
VGG-like (0.3) 70.6 72.8 61.1 72.3
CRNN (1) 72.0 74.2 58.7 69.1




Fvaluation of Learned Representations

Fine tuning on downstream tasks after initializing with pre-trained weights
-~ Pre-trained performance = little degradation between tasks: why?
= “smaller clean” task: fine tune on unseen clean data (albeit small)

» ‘larger noisy” task: fine tune on same data used for unsupervised learning

(now affected by label noise)

train set test set
[ noisy clean [ }
15,813 clips / 38.8 hours 1772/2.4 947 /1.4
Model Linear | Larger noisy set | Small clean set
(weights in M) random*  p-t | random p-t
ResNet-18 (11) 65.4 78.2 56.5 77.9
VGG-like (0.3) 70.6 72.8 61.1 72.3
CRNN (1) 72.0 74.2 58.7 69.1




summary & Takeaways

- Framework for unsupervised contrastive learning of sound event representations
-~ Maximize similarity between differently augmented views of the same spectrogram

-~ Successful representation learning by tuning compound
m positive patch sampling & mix-back & data augmentation

-~ Unsupervised contrastive pre-training can
= Mmitigate the impact of data scarcity
m iNncrease robustness against noisy labels

-~ Fine tuning a model initialized with pretrained weights outperforms supervised
baselines
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Proposed Approach: Data Augmentation

5 - SS: Stochastic sampling {f data views
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. Mix-back

Mix-back

DA: Data augmentation

Generating views for contrastive learning of audio representations
1. Sampling patches
2. mix-back
3. Basic augmentations



Ablation Study: Discussion
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Ablation Study: Discussion

-~ Framework is sensitive
s compositions, parameter tuning, 7, etc

= Nnot one key ingredient but a compound

- Composing augmentations helps, but done carefully
= ordering of the DAs matter
= joining individually-tuned DAs can be suboptimal (affect each other)

s tuning composition can be computationally intensive

-~ Hypothesis: shortcuts mitigated by sampling patches and mix-back
= time-frequency patterns used to lower the loss w/o useful learning
e recording gear, room acoustics, background, ...

-~ Batch size:
= common knowledge: the larger the better (more negative examples)
m Our case: batch size of 128 (worse scenario)



