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● Labels that fail to properly represent acoustic content in audio clip

● Why is label noise relevant?

● Label noise effects: performance decrease / increased complexity

Label noise in sound event classification
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Our use case
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● Given a learning pipeline:

⇀ sound event dataset with noisy labels & deep network
⇀ that we do not want to change

■ no network modifications / no additional (clean) data

● How can we improve performance in THIS setting?

⇀ just minimal changes
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● Our work

⇀ simple & efficient ways to boost performance in presence of noisy labels
⇀ agnostic to network architecture
⇀ that can be plugged into existing learning settings
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Dataset: FSDnoisy18k
● Freesound audio organized with 20 class labels from AudioSet Ontology

● audio content retrieved by user-provided tags

⇀ per-class varying degree of types and amount of label noise

● 18k clips / 42.5 h

● singly-labeled data -> multi-class problem

● variable clip duration: 300ms - 30s

● proportion train_noisy / train_clean = 90% / 10%

● freely available http://www.eduardofonseca.net/FSDnoisy18k/
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http://www.eduardofonseca.net/FSDnoisy18k/


Label noise distribution in FSDnoisy18k

● IV: in-vocabulary, events that are part of our target class set

● OOV: out-of-vocabulary, events not covered by the class set
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CNN baseline system
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Label Smoothing Regularization (LSR)
● Regularize the model by promoting less confident output distributions 

⇀ smooth label distribution:  hard → soft targets
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● Encode prior of label noise: 2 groups of classes:

⇀ low label noise

⇀ high label noise

Noise dependent LSR
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LSR results
● Vanilla LSR provides limited performance

● Better by encoding prior knowledge of label noise through noise-dependent 
epsilon
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mix-up
● Linear interpolation

⇀ in the feature space
⇀ in the label space

● Again, soft targets
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mix-up results
● mix-up applied from the beginning: limited boost

● creating virtual examples far from the training distribution confuses the model

● warming-up the model helps!
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Noise-robust loss function
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Noise-robust loss function
● Default loss function in multi-class setting: Categorical Cross-Entropy (CCE)
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Noise-robust loss function
● Default loss function in multi-class setting: Categorical Cross-Entropy (CCE)

● CCE is sensitive to label noise: emphasis on difficult examples (weighting)

⇀ beneficial for clean data

⇀ detrimental for noisy data
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● ℒq loss intuition

⇀ CCE: sensitive to noisy labels (weighting)

⇀ Mean Absolute Error (MAE): 

■ avoid weighting
■ difficult convergence

Noise-robust loss function
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Zhilu Zhang and Mert Sabuncu, Generalized cross entropy loss for training deep neural networks with 
noisy labels. In NeurIPS 2018



● ℒq loss intuition

⇀ CCE: sensitive to noisy labels (weighting)

⇀ Mean Absolute Error (MAE): 

■ avoid weighting
■ difficult convergence

● ℒq loss is a generalization of CCE and MAE:

⇀ negative Box-Cox transformation of softmax predictions

⇀ q = 1  →  ℒq = MAE    ;    q → 0  →  ℒq = CCE      

Noise-robust loss function
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Zhilu Zhang and Mert Sabuncu, Generalized cross entropy loss for training deep neural networks with 
noisy labels. In NeurIPS 2018



Learning and noise memorization
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● Deep networks in presence of label noise 

⇀ problem is more severe as learning progresses

learning

epochn1

learn 
easy & 
general
patterns

memorize
label
noise

Arpit, Jastrzebski, Ballas, Krueger, Bengio, Kanwal, Maharaj, Fischer, Courville, and Bengio., A closer look at 
memorization in deep networks. In ICML 2017



Learning as a two-stage process
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● Learning process as a two-stage process

● After n1 epochs:

⇀ model has converged to some extent

⇀ use it for instance selection 

■ identify instances with large training loss

■ ignore them for gradient update
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Ignoring large loss instances
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● Approach 1: 

⇀ discard large loss instances from each mini-batch of data

⇀ dynamically at every iteration

⇀ time-dependent loss function
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Ignoring large loss instances
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● Approach 2: 

⇀ use checkpoint to predict scores on whole dataset

⇀ convert to loss values

⇀ prune dataset, keeping a subset to continue learning
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Noise-robust loss function results
● We report results with two models

⇀ using baseline

⇀ using a more accurate model
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A more accurate model: DenSE
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Noise-robust loss function results
● pruning dataset slightly outperforms discarding at mini-batch
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Noise-robust loss function results
● pruning dataset slightly outperforms discarding at mini-batch

● discarding at mini-batch is less stable
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Noise-robust loss function results
● pruning dataset slightly outperforms discarding at mini-batch

● discarding at mini-batch is less stable

● DenSE:

⇀ higher boosts wrt ℒq

⇀ more stable 
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Summary & takeaways
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● Three simple model agnostic approaches against label noise

⇀ easy to incorporate to existing pipelines

⇀ minimal computational overhead

⇀ absolute accuracy boosts ~ 1.5 - 2.5%

● Most promising: pruning dataset using model as instance selector

⇀ could be done several times iteratively

⇀ useful for dataset cleaning

⇀ but dependent on pruning time & pruned amount
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Thank you!
https://github.com/edufonseca/waspaa19

https://github.com/edufonseca/waspaa19


Dataset pruning & noise memorization
● We explore pruning the dataset at different epochs
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Dataset pruning & noise memorization
● model not too accurate → pruning many clips is worse
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Dataset pruning & noise memorization
● model is more accurate → allows larger pruning (to a certain extent)
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Dataset pruning & noise memorization
● model start to memorize noise?
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discarded clips



Why this vocabulary?
● data availability 

● classes “suitable” for the study of label noise

⇀ classes described with tags also used for other audio materials
■  Bass guitar, Crash cymbal, Engine, ...

⇀ field-recordings: several sound sources expected
■ only the most predominant(s) tagged: Rain, Fireworks, Slam, Fire, ...

⇀ pairs of related classes:
■ Squeak & Slam / Wind & Rain
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Acoustic guitar / Bass guitar / Clapping / Coin (dropping) / Crash cymbal / Dishes, pots, and pans / Engine / Fart / 

Fire / Fireworks / Glass / Hi-hat / Piano / Rain / Slam / Squeak / Tearing / Walk, footsteps / Wind / Writing 


