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Context

● Task: learn audio representation from unlabeled data

● Self-supervised learning
○ Learn representation from unlabeled data without external supervision
○ Proxy learning task:

■ Generate pseudo-labels from patterns in data
■ Learn mapping from inputs to low dimensional representations

○ Use representations for downstream tasks e.g. sound event classification
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Self-Supervised Contrastive Representation Learning

● Contrastive learning is learning by comparing
○ We compare pairs of input examples:

■ positive pairs of similar inputs
■ negative pairs of unrelated inputs

● Goal is an embedding space where representations …
○ of similar examples → close together 
○ of dissimilar examples → further away
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Building a Proxy Learning Task

To compare pairs of positive examples:

1. How to generate the pairs of positive examples?

2. Once generated, how to compare them? 
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How to Generate Pairs of Positive Examples?

● Data augmentation → differently-augmented views of the same input example

● Previously, composition of augmentations:
○ sampling nearby audio frames
○ artificial mixing
○ time/freq masking
○ cropping
○ shifts 
○ …
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How to Generate Pairs of Positive Examples?

● Data augmentation → differently-augmented views of the same input example

● Previously, composition of augmentations:
○ sampling nearby audio frames
○ artificial mixing
○ time/freq masking
○ cropping
○ shifts 
○ …

● Artificial & handcrafted transformations with tunable hyperparameters

● Risk of introducing somewhat unrealistic domain shift?
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How to Generate Pairs of Positive Examples?

● Real-world sound scenes: time-varying collections of sound sources
○ Mixture of sound events 

● Association of sound events with mixture and each other is semantically constrained
○ Not all classes co-occur naturally
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Sound Separation to Generate Views for Contrastive Learning

● Decompose sound scene (mixture) into M semantically-linked views 
○ Simpler separated channels share semantics with mixture and with each other

● Unlike previous approaches to generate views, sound separation:
○ input-dependent / ecologically valid views / reduces need for parameter tuning
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Sound Separation to Generate Views for Contrastive Learning

● Decompose sound scene (mixture) into M semantically-linked views 
○ Simpler separated channels share semantics with mixture and with each other

● Unlike previous approaches to generate views, sound separation:
○ input-dependent / ecologically valid views / reduces need for parameter tuning

● Comparing mixture vs channel meets recommended guidelines
○ Mutual information between views is reduced
○ Some relevant semantic information is preserved

P 9Tian et al., What Makes for Good Views for Contrastive Learning? NeurIPS 2020
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How to Compare Pairs of Examples?

Two popular proxy tasks:

● Similarity Maximization (SimCLR)
○ Maximize the similarity between differently-augmented views

● Coincidence Prediction
○ Predict whether a pair of examples occurs within a temporal proximity
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How to Compare Pairs of Examples?

Two popular proxy tasks:

● Similarity Maximization (SimCLR)
○ Maximize the similarity between differently-augmented views

● Coincidence Prediction
○ Predict whether a pair of examples occurs within a temporal proximity

● We propose to optimize them jointly as a multi-task objective
● Same goal → semantically structured embedding space, pursued in different way

○ SM: Co-locate representations of positives
○ CP: Weaker condition → get a representation that supports coincidence prediction
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Proposed Approach: Overview
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Augmentation Front-end
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MixIT for Unsupervised Sound Separation

● Mixture invariant training (MixIT)
○ Model is tasked to separate mixtures of audio clips
○ Fully unsupervised
○ Promising results in Universal Sound Separation

● Separation model:
○ Improved time-domain convolutional network (TDCN++) 

■ Similar to Conv-TasNet
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Composition of Data Augmentation Methods

● Composing multiple augmentations is important
○ more challenging proxy learning task → better representation

● We combine sound separation with
○ Temporal proximity sampling
○ SpecAugment 

■ time/freq masking
■ mild time warping
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Augmentation front-end
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● MixIT separation
● Data Augmentation (DA) blocks:

○ Temporal proximity sampling
○ SpecAugment

● Each DA block → different instance 



Proxy Learning Tasks

P 17

DA′

DA Encoder

Encoder

Sim. Head

MixIT

DA′′′ Encoder

DA′′ Encoder

Coin. Headconcat

random
channel 
selection

Sim. Head

Similarity maximization

Coincidence prediction



Proposed Approach: Implementation Details
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● MixIT: M=2 output channels (more practical than 4)

● One encoder: PANN’s CNN14 (~75M) 
○ Architecture with VGG style
○ Bottleneck layer to 128-d for representation h

● Two heads:
○ MLP & ReLU

Kong et al., PANNs: Large-scale pretrained audio neural networks for audio pattern recognition. 
TASLP 2020



Evaluation

● Downstream Classification with shallow model (mAP):
○ Using external AudioSet version
○ Training a shallow network on top of the learned representation
○ MLP w/ one layer + ReLU

● Query by Example Retrieval (mAP):
○ Subset of AudioSet with ~100 positive and negative examples
○ Compute cosine distance for all possible pairs (pos, pos) and (pos, neg)
○ Rank distances & compute AP
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Evaluation

● Downstream Classification with shallow model (mAP):
○ Using external AudioSet version
○ Training a shallow network on top of the learned representation
○ MLP w/ one layer + ReLU

● Query by Example Retrieval (mAP):
○ Subset of AudioSet with ~100 positive and negative examples
○ Compute cosine distance for all possible pairs (pos, pos) and (pos, neg)
○ Rank distances & compute AP
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Sound Separation for Contrastive Learning

● SSep pre-processing outperforms SpecAugment
● Best: combining both
● Comparing input mixture w/ separated channels

○ better representations than using only the input mixture
● SSep can be successfully combined with other commonly-used augmentations

P 21



How About Using a Separation Model Before Convergence? 

●  Four audio processors: four training checkpoints of a single separation network
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How About Using a Separation Model Before Convergence? 

● All processors provide valid forms of augmentation
● Combining some of them using OR rule can be helpful 

P 23



Jointly Optimizing Both Proxy Tasks

● Similarity Maximization & Coincidence Prediction
● Small boosts across the board
● Key ingredient: 

○ Combination of diverse processing by separation model as learning progresses
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Comparison with Previous Work

● Proposed framework 
○ Outperforms some past and multimodal approaches
○ Competitive with SOTA
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Takeaways

● Sound separation → valid augmentation to generate views for contrastive learning

● Learning to associate sound mixtures w/ separated channels elicits semantic structure 
in learned representation

● Sound separation allows combination w/ commonly-used augmentations

● Transformations by different checkpoints of the same separation model
○ Valid augmentations for generating positives

● Benefit in jointly training similarity maximization and coincidence prediction
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Similarity Maximization (SM)
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● Goal: maximize agreement between differently-augmented views
● Encoder: Extract low-dimensional embeddings h

○ Once training is over, h is used for downstream tasks
● Similarity Head: Map h to metric embedding z, where loss is applied (tends to work best)
● Normalized temperature-scaled cross-entropy (NT-Xent) loss

○ Softmax structure
○ Scoring function: cosine similarity with temperature scaling 𝝉 
○ Maximize similarity between views

Chen et al., A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020



Coincidence Prediction (CP)
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● Based on slowness prior: waveforms vary quickly ↔ semantics change slowly
○ Stable representation to explain semantics
○ Representation that would support prediction of coincidence in temporal proximity

● Encoder: Extract low-dimensional embeddings h & concatenate pairs of embeddings
● Coincidence Head: Map [hm, hc] to probability that pair is coinciding

○ binary classification task: predict (non)-coincidence
● Binary cross entropy loss (BCE)

Jansen et al., Coincidence, Categorization, and Consolidation: Learning to Recognize Sounds with 
Minimal Supervision. ICASSP 2020
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