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Context

e Task: learn audio representation from unlabeled data

e Self-supervised learning
o Learn representation from unlabeled data without external supervision
o Proxy learning task:
m Generate pseudo-labels from patterns in data
m Learn mapping from inputs to low dimensional representations
o Use representations for downstream tasks e.g. sound event classification
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Self-Supervised Contrastive Representation Learning

e Contrastive learning is learning by comparing
o We compare pairs of input examples:
m positive pairs of similar inputs
m nhegative pairs of unrelated inputs

e Goalis an embedding space where representations ...
o of similar examples — close together
o of dissimilar examples — further away
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Building a Proxy Learning Task

To compare pairs of positive examples:
1. How to generate the pairs of positive examples?

2. Once generated, how to compare them?
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How to Generate Pairs of Positive Examples?

e Data augmentation — differently-augmented views of the same input example

e Previously, composition of augmentations:
o sampling nearby audio frames

artificial mixing

time/freq masking

cropping

shifts

O O O O O
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How to Generate Pairs of Positive Examples?

e Data augmentation — differently-augmented views of the same input example

e Previously, composition of augmentations:
o sampling nearby audio frames

artificial mixing

time/freq masking

cropping

shifts

O O O O O

e Artificial & handcrafted transformations with tunable hyperparameters

e Risk of introducing somewhat unrealistic domain shift?
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How to Generate Pairs of Positive Examples?

e Real-world sound scenes: time-varying collections of sound sources
o Mixture of sound events

e Association of sound events with mixture and each other is semantically constrained
o Not all classes co-occur naturally
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Sound Separation to Generate Views for Contrastive Learning

e Decompose sound scene (mixture) into M semantically-linked views
o Simpler separated channels share semantics with mixture and with each other

e Unlike previous approaches to generate views, sound separation:
o input-dependent / ecologically valid views / reduces need for parameter tuning

channels

mixture

- Sound -
Separation
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Sound Separation to Generate Views for Contrastive Learning

e Decompose sound scene (mixture) into M semantically-linked views
o Simpler separated channels share semantics with mixture and with each other

e Unlike previous approaches to generate views, sound separation:
o input-dependent / ecologically valid views / reduces need for parameter tuning

e Comparing mixture vs channel meets recommended guidelines
o Mutual information between views is reduced
o Some relevant semantic information is preserved

channels
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How to Compare Pairs of Examples?

Two popular proxy tasks:

e Similarity Maximization (SIimCLR)
o Maximize the similarity between differently-augmented views
e Coincidence Prediction

o Predict whether a pair of examples occurs within a temporal proximity

Chen et al., A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020
Fonseca et al., Unsupervised Contrastive Learning of Sound Event Representations, ICASSP 2021
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How to Compare Pairs of Examples?

Two popular proxy tasks:

e Similarity Maximization (SIimCLR)
o Maximize the similarity between differently-augmented views
e Coincidence Prediction
o Predict whether a pair of examples occurs within a temporal proximity

e We propose to optimize them jointly as a multi-task objective
e Same goal — semantically structured embedding space, pursued in different way
o SM: Co-locate representations of positives
o CP:Weaker condition — get a representation that supports coincidence prediction

Chen et al., A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020
Fonseca et al., Unsupervised Contrastive Learning of Sound Event Representations, ICASSP 2021

Gox« gle Research Jansen et al., Coincidence, Categorization, and Consolidation: Learning to Recognize Sounds with
Minimal Supervision. ICASSP 2020



Proposed Approach: Overview

Sound separation

augmentation front-end
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Augmentation Front-end

Sound separation
augmentation front-end
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MixIT for Unsupervised Sound Separation

e Mixture invariant training (MixIT)
o Model is tasked to separate mixtures of audio clips
o Fully unsupervised
o Promising results in Universal Sound Separation

e Separation model:
o Improved time-domain convolutional network (TDCN++)
m  Similar to Conv-TasNet

Wisdom et al., Unsupervised Sound Separation Using Mixture Invariant Training. Neur|PS 2020
Go« gle Research Kavalerovetal, Universal Sound Separation. WASPAA 2019
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Composition of Data Augmentation Methods

e Composing multiple augmentations is important
o more challenging proxy learning task — better representation

e We combine sound separation with
o Temporal proximity sampling
o SpecAugment
m time/freq masking
m mild time warping

Jansen et al., Unsupervised learning of semantic audio representations. ICASSP 2018
Go gIe Research Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognitions
Interspeech 2019



Augmentation front-end

Sound separation
augmentation front-end
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Data Augmentation (DA) blocks:
o Temporal proximity sampling
o SpecAugment

e FEach DA block — different instance



Proxy Learning Tasks

Similarity maximization
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Proposed Approach: Implementation Details

e MixIT: M=2 output channels (more practical than 4)

e One encoder: PANN's CNN14 (~75M)
o Architecture with VGG style
o Bottleneck layer to 128-d for representation h

e Two heads:
o MLP & ReLU

Google Research Kong et al., PANNs: Large-scale pretrained audio neural networks for audio pattern recognition:
TASLP 2020



Evaluation

e Downstream Classification with shallow model (mAP):
o Using external AudioSet version
o Training a shallow network on top of the learned representation
o MLP w/ one layer + ReLU

e Query by Example Retrieval (mAP):
o Subset of AudioSet with ~100 positive and negative examples
o Compute cosine distance for all possible pairs (pos, pos) and (pos, neg)
o Rank distances & compute AP

Google Research P10



Evaluation
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Sound Separation for Contrastive Learning

e SSep pre-processing outperforms SpecAugment
e Best: combining both
e Comparing input mixture w/ separated channels
o better representations than using only the input mixture
e SSep can be successfully combined with other commonly-used augmentations

Table 2: Classification mAP using sound separation (SSep) in the
front-end and the SimCLR back-end. TP is always applied; SpecAug-
ment (SA) is applied as specified.

Comparison SSep SA mAP
Mix vs mix (baseline) - - 0.248
Mix vs mix (baseline) - v 0.265
Mix vs chan v - 0.272
Mix vs chan v v 0.282

Google Research P21



How About Using a Separation Model Before Convergence?

e Four audio processors: four training checkpoints of a single separation network

Input mixture S2 (1.7M steps) S1 (5k steps) F (500 steps) N (O step)
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How About Using a Separation Model Before Convergence?

e All processors provide valid forms of augmentation
e Combining some of them using OR rule can be helpful

Table 4: Classification mAP using different checkpoints of the sepa-
ration model as learning progresses (top), as well as some combina-
tions (bottom). TP and SpecAugment are applied.

Models SimCLR
S2 (1.7M) 0.282
S1 (5k) 0.283
F (500) 0.280
N (0) 0.286
S2VF 0.283
S2VN 0.297

Google Research S2VEVN 0.255 P23




Jointly Optimizing Both Proxy Tasks

e Similarity Maximization & Coincidence Prediction
e Small boosts across the board
e Key ingredient:
o Combination of diverse processing by separation model as learning progresses

Table 4: Classification mAP using different checkpoints of the sepa-
ration model as learning progresses (top), as well as some combina-
tions (bottom). TP and SpecAugment are applied.

Models SimCLR SimCLR & CP
S2 (1.7M) 0.282 0.289
S1 (5k) 0.283 0.293
F (500) 0.280 0.297
N (0) 0.286 0.301
S2VF 0.283 0.300
S2V N 0.297 0.306

Google Research S2VFVN  0.285 0.310




Comparison with Previous Work

e Proposed framework
o Qutperforms some past and multimodal approaches
o Competitive with SOTA

Table 5: Comparison with previous work using shallow model clas-
sification. MM = Multimodal approach.

Method d MM mAP
Unsupervised triplet [14] 128 - 0.244
C3[15] 128 v 0.285
Separation-based framework (ours) 128 - 0.310
Separation-based framework (ours) 1024 - 0.326
MMV [40] 2048 v 0.309
Multi-format [19] 2048 - 0.329

[14] Jansen et al., Unsupervised learning of semantic audio representations. ICASSP 2018
[15] Jansen et al., Coincidence, Categorization, and Consolidation: Learning to Recognize Sounds with Minimal
Supervision. ICASSP 2020

Go gle Research [40] Alayrac et al., Self-supervised multimodal versatile networks. 2020 P25
[19] Wang & van der Oord. Multi-Format Contrastive Learning of Audio Representations. SAS Workshop NeurlPS 2020



Takeaways

e Sound separation — valid augmentation to generate views for contrastive learning

e Learning to associate sound mixtures w/ separated channels elicits semantic structure
in learned representation

e Sound separation allows combination w/ commonly-used augmentations

e Transformations by different checkpoints of the same separation model
o Valid augmentations for generating positives

e Benefit in jointly training similarity maximization and coincidence prediction

Google Research P26
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Similarity Maximization (SM)

e Goal: maximize agreement between differently-augmented views
e Encoder: Extract low-dimensional embeddings h
o Once training is over, h is used for downstream tasks
e Similarity Head: Map h to metric embedding z, where loss is applied (tends to work best)
e Normalized temperature-scaled cross-entropy (NT-Xent) loss

o Softmax structure
o  Scoring function: cosine similarity with temperature scaling =

o Maximize similarity between views
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Coincidence Prediction (CP)

e Based on slowness prior: waveforms vary quickly «<» semantics change slowly

o Stable representation to explain semantics

o Representation that would support prediction of coincidence in temporal proximity
e Encoder: Extract low-dimensional embeddings h & concatenate pairs of embeddings
e Coincidence Head: Map [h_, h ] to probability that pair is coinciding

o binary classification task: predict (non)-coincidence
e Binary cross entropy loss (BCE)
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